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Abstract
Mouse gene targeting studies revealed that the melanocortin-3

receptor (MC3R) affected feeding efficiency and fat storage in

mice. The functions of the MC3R in other mammalian species

remain to be investigated. We are interested in exploring the

functions of the porcine MC3R (pMC3R) in regulating fat

storage because of the economical importance of swine industry.

Although nucleotide sequences of MC3Rs from several species

havebeen reported, pMC3Rhadnotbeencloned and sequenced.

We reported herein the molecular cloning and pharmacological

analysis of the pMC3R. Sequence analysis revealed that pMC3R

was highly homologous (O80%) at nucleotide and amino

acid sequences to human, rat, and mouse MC3Rs. With human

MC3R (hMC3R) as a control, the binding and signaling

properties of pMC3R were investigated using several agonists
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including a- and g-melanocyte-stimulating hormone (a- and

g-MSH), D-Trp8-g-MSH, and [Nle4-D-Phe7]-MSH (NDP-

MSH) and the natural antagonist agouti-related protein (AgRP).

The results showed that pMC3R bound NDP-MSH with the

highest affinity followed by D-Trp8-gMSH,g-, anda-MSH.The

same rankingwas also found for hMC3R, although pMC3Rhad

two- to ninefold higher affinities for these ligands. Both pMC3R

and hMC3R bound AgRP with high affinity. D-Trp8-g-MSH

was the most potent agonist to stimulate cAMP generation

followedbyNDP-,a-, andg-MSH.This rankingwas the same as

that of hMC3R. The availability of pMC3R and its pharma-

cological characteristicswill facilitate the investigation of pMC3R

in regulating food intake and fat storage.
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Introduction

Melanocortins including a-, b-, and g-melanocyte-stimulating

hormones (a-, b-, and g-MSH) and adrenocorticotropic

hormone (ACTH) are short peptide hormones derived from

pro-opiomelanocortin (POMC) through tissue-specific post-

translational processing (Smith & Funder 1988). The melano-

cortin receptors (MCRs) are members of rhodopsin-like

(family A) G-protein-coupled receptors (GPCRs). They are

expressed on the cell surface, predicted to have seven

transmembrane domains (TMDs) connected by alternating

extracellular and intracellular loops, with the N-terminus lying

on the outside of the cell and the C-terminus locating on the

inside of the cell. Once bound toMCRs,melanocortins induce

conformational changes in MCRs facilitating their coupling to

and activation of the stimulatory G-protein, Gs. Activated Gs

enhances adenylyl cyclase activity resulting in increased

production of the intracellular second messenger cAMP

triggering downstream signal transduction pathways (Gantz &

Fong 2003). Agouti and agouti-related protein (AgRP) are the

endogenous antagonists of the MCRs. So far, five MCRs have

been cloned, named MC1R to MC5R according to the

sequence of their cloning (Gantz & Fong 2003). Of theMCRs,

MC3R and MC4R are the main subtypes expressed in the

brain. They are expressed in the hypothalamic paraventricular
nucleus and arcuate nucleus as well as in other brain regions

including the cortex, thalamus, and hippocampus (Gantz et al.

1993a,b, Roselli-Rehfuss et al. 1993, Mountjoy et al. 1994).

The MC3R is also expressed in the placenta and gut (Gantz

et al. 1993a) and immune cells such as macrophages (Getting

et al. 1999).

Although both the MC3R and the MC4R are involved in

the central control of energy homeostasis, it is clear that the

MC4R primarily regulates food intake and energy expendi-

ture (reviewed in Cone 2005). On the other hand, the

MC3R does not regulate food intake. MC3R knockout mice

did not have hyperphagia and obesity; they had similar or

even decreased levels of food intake and normal energy

expenditure as compared with their wild-type littermates

(Butler et al. 2000, Chen et al. 2000). Of particular interest

was the observation that these mice have increased fat mass

and decreased lean mass. Therefore, the MC3R is involved in

regulation of feeding efficiency and fat storage. When

compared with MC3R or MC4R single gene knockout

mice, mice lacking both MC3R and MC4R developed

exacerbated obesity, suggesting that the two central MCRs

regulate different aspects of energy homeostasis (Chen et al.

2000). However, a recent gene knockout study performed

with an obesity-resistant mice strain (Black Swiss 129)

indicated that MC3R single gene knockout mice developed
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a comparable degree of increased adiposity as the MC4R

knockout mice (Zhang et al. 2005) suggesting that the MC3R

might also be involved in regulating food intake and energy

expenditure. A potential pathway that the MC3R might

regulate food intake is by releasing the inhibitory effect of the

MC3R on POMC neurons (Marks et al. 2006).

To begin to understand what role(s) theMC3Rmight play in

regulating fat storage and energy homeostasis in the pig, we

report herein the molecular cloning and pharmacological

characterization of the pMC3R. For the pharmacological

characterizations, we tested several ligands including the

endogenous agonists a- and g-MSH, a superpotent agonist

specific for theMC3R, D-Trp8-g-MSH (Grieco et al. 2000), and

a superpotent analog of a-MSH specific for all MCRs except

MC2R (the ACTH receptor), [Nle4-D-Phe7]-MSH (NDP-

MSH; Sawyer et al. 1980). We also tested the binding of the

cloned receptor to thenatural antagonist of theMC3/4R,AgRP.
Materials and Methods

Plasmid and peptides

Human MC3R cDNA inserted in a mammalian expression

vector, pcDNA3.1, was kindly provided by Dr Ira Gantz

(University of Michigan, Ann Arbor, MI, USA). a-, g-, and
NDP-MSH were purchased from Phoenix Pharmaceuticals

(Belmont, CA, USA). D-Trp8-g-MSH and AgRP (86–132)

were obtained from Peptides International Inc. (Louisville,

KY, USA). 125I-iodinated NDP-MSH was purchased from

Peptide Radioiodination Service Center, The University of

Mississippi (University, MS, USA).
Molecular cloning of porcine MC3R

Sequence analysis performed with DNAman program (Lynnon

Corp., Quebec, Canada) suggested that the putative coding

region of the pMC3R gene consists of a single exon of 960 bp.

Thus, the pMC3R coding region was amplified directly from

porcine genomicDNA (Novagen, SanDiego,CA,USA) using a

primer pair (sense primer, 50-AAGAATTCATGAATGCTTC-

GTGCTGC-30 and antisense primer, 50-CCTCTAGAGCCT-

CCTACCCCAGGTTC-30) designed based on the published

pig genomic DNA sequence from clone CH242-163M14 on

chromosome 17 (GenBank accession no. CR956393). To

facilitate the cloning, EcoRI and XbaI sites (underlined) were

incorporated in sense and antisense primers respectively. The

PCR was performed in a 50 ml mixture containing 100 ng

porcine genomicDNA,0.25 mMdNTPs, 0.4 mMof eachof the

primers, 1! pfu Turbo DNA polymerase buffer, 1.5 mM

MgCl2, and 2.5 U pfu Turbo DNA polymerase (Stratagene, La

Jolla, CA, USA) with the following parameters: 2 min at 95 8C

for one cycle and 1 min at 95 8C, 45 s at 56 8C, and 90 s at 72 8C

for 45 cycles followed by a final cycle at 72 8C for 10 min.

Subsequently, the 960 bp PCR fragment was visualized after

electrophoresis with ethidium bromide using a 1% agarose gel,
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purified with Qiagen PCR purification kit (Qiagen), double

digested with EcoRI and XbaI (New England Biolabs, Beverly,

MA,USA).TheEcoRI–XbaIDNA fragmentwas purified again

with Qiagen PCR purification kit and then cloned into the

expression vector pcDNA3.1(C) using T4DNA ligase (Roche)

according to the manufacturer’s protocol. The nucleotide

sequence of the cloned pMC3R gene was determined by

sequencing three independent plasmids and deposited in NCBI

GenBank with an accession number EU091085. Plasmids were

preparedwithQiagen plasmidmaxi kit for transfection of human

embryonic kidney (HEK) 293T cells as described below.
Homology and phylogenetic analysis of pMC3R

Homology and phylogenetic analyses at nucleotide and amino

acid levels were performed between different species including

porcine, human, mouse, and rat using DNAman program and

MacVector 8.0 (Accelrys Software Inc., San Diego, CA, USA)

respectively, according to the manufacturer’s protocols.
Transient expression of plasmids

Transient expression of plasmids was performed in HEK293T

cells (American Type Culture Collection,Manassas, VA, USA).

HEK293T cells were cultured at 5% CO2 in Dulbecco’s

modifiedEagle’smedium supplementedwith 10%newborn calf

serum, 10 mMHEPES, 100 units/ml penicillin, and100 mg/ml

streptomycin (all from Invitrogen). Cells were plated on gelatin-

coated 35 mm six-well plates (Corning, Corning, NY,USA) or

on gelatin-coated 100 mm plates. Transient transfection was

performed using the calcium precipitation method (Chen &

Okayama 1987). For each 35 mm well of the six-well plates or

100 mm plates, 2 ml media containing 4 mg plasmid or 10 ml

media containing 20 mg plasmid were added respectively. Cells

were used for measuring ligand binding and agonist-stimulated

cAMP generation 48-h post-transfection as described below.
Radioligand-binding assay with agonists

The method for binding assay has been described in detail before

(Tao & Segaloff 2003). Briefly, 48 h after transfection, cells were

washed twice with warmWaymouth’s MB752/1 media (Sigma–

Aldrich) modified to contain 1 mg/ml BSA (referred herein

as Waymouth/BSA). One milliliter of fresh Waymouth/BSA

with or without different concentrations of unlabeled agonists

includinga-,g-,NDP-, andD-Trp8-g-MSHand100 000 c.p.m.

of 125I-NDP-MSH (50 ml) was added to each well. The final

concentrationof unlabeled ligands ranged from10K10 to 10K5 M

(for a-, g-, and D-Trp8-g-MSH) or from 10K11 to 10K6 M (for

NDP-MSH).After incubation at 37 8Cfor 1 h, cellswerewashed

twice with cold Hanks’ balanced salt solution (Sigma–Aldrich)

modified to contain 1 mg/ml BSA (referred herein as HBSS/

BSA). Then, 100 ml of 0.5 M NaOH were added to each well.

Lysed cells were collected from each well using cotton swabs to

plastic tubes, and ligand binding was counted in a g-counter. All
determinations were performed in duplicates.
www.endocrinology-journals.org
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Radioligand-binding assay with AgRP

For AgRP-binding assay, transient transfection of plasmids was

performed in 100 mm dishes as described above. Twenty-four

hrs after transfection, cells were trypsinized, split into 24-well

plates, and incubated for an additional 24 h. Cells were washed

twice with warm Waymouth/BSA. Fresh Waymouth/BSA

containing 20 ml of 125I-NDP-MSH (40 000 c.p.m.) and 20 ml
different concentrations (including zero) of unlabeled antagonist

AgRP were added to each well to a total volume of 200 ml per
well. The final concentration of the unlabeled AgRP ranged

from 10K11 to 10K6 M. After incubation at 37 8C for 1 h, cells

werewashed twicewith coldHBSS/BSA.Then, 50 ml of 0.5 M
NaOHwere added to eachwell.Cell lysate collection and ligand

binding were performed as described above. All determinations

were performed in triplicates.
Intracellular cAMP generation

HEK293T cells were plated and transfected as described above.

Forty-eight hours after transfection, cells were washed twice

with warm Waymouth/BSA. Then, 1 ml fresh Way-

mouth/BSA containing 0.5 mM isobutylmethylxanthine

(Sigma–Aldrich) was added to each well. After incubation at

37 8C for 15 min, either buffer alone or different concentrations

of ligands (final concentrations of 10K11–10K5 M for a- and
g-MSH, and 10K12–10K6 M for NDP-MSH and D-Trp8-g-
MSH) were added, and the incubation was continued for an

additional 1 h. Cells were then placed on ice, media were

aspirated, and intracellular cAMPs were extracted by the

addition of 1.5 ml fresh 0.5 M perchloric acid containing

180 mg/ml theophylline, and measured using RIA. All

determinations were performed in triplicate.
Statistical analysis

Maximal binding (Bmax), IC50, maximal responses (Rmax), and

EC50 were calculated using Prism 4.0 (GraphPad, San Diego,

CA, USA). Data were presented as the mean and S.E.M. All

statistical analyses were done using Prism 4.0.
Results

Nucleotide and deduced amino acid sequences of the putative
pMC3R

Civanova et al. (2004) reported the partial sequence of the

pMC3R and mapped the pMC3R gene to porcine chromo-

some 17. Recently, the complete nucleotide sequence of

porcine chromosome 17 was deposited in GenBank. We

performed nucleotide sequence alignment among the partial

nucleotide sequence of pMC3R gene (GenBank accession

no. AJ744762), nucleotide sequence of the clone CH242-

163M14 on porcine chromosome 17 (GenBank accession no.

CR956393), and nucleotide sequences of human, rat, and

mouse MC3Rs (GenBank accession nos. NM_019888,
www.endocrinology-journals.org
NM_001025270, and NM_008561 respectively). We found

that the putative pMC3R gene was intronless and contained an

open reading frameof 960 bpencoding a putative protein of 319

amino acids (Fig. 1A). The TATA-box, characteristic of the

mammalian promoter region,was identified 382 bpupstreamof

the translation initiation site of the putative pMC3R; a potential

poly(A)C signal was recognized 1381 bp downstream from the

translation stop site of the putative pMC3R (highlighted in bold

in Fig. 1A).Comparison of the putative pMC3R sequencewith

that of the MC3Rs from other species showed that pMC3R is

88.2, 85.3, and 86.0% homologous at nucleotide level (Fig. 1B)

and 87.5, 83.1, and 83.7% identical at amino acid level (Fig. 2A

and B) to human, mouse, and rat MC3Rs respectively. Further

comparison indicated that pMC3R is significantly conserved in

aminoacid sequence toother species in theTMDs, extracellular,

and intracellular loops. But lower conservation is observed at the

amino and carboxyl termini. In addition, the putative pMC3R

is four amino acids shorter at the carboxyl terminus than human,

rat, and mouse MC3Rs, and 37 amino acids shorter at the

N-terminus than humanMC3R (but the same as that of rat and

mouse MC3Rs). Phylogenetic analysis indicates that pMC3R

clusters together with MC3Rs from other species at nucleotide

level (Fig. 1C) but is significantly divergent fromhumanMC3R

and to a less degree from mouse and rat MC3Rs at amino acid

level (Fig. 2C).
Expression and functional analysis of the cloned pMC3R
in HEK293T cells

Based on the sequence analysis described above, primers were

designed and the 960 bp of putative pMC3R was directly

amplified from porcine genomic DNA by PCR and cloned

into mammalian expression vector pcDNA3.1 for functional

analysis. To demonstrate whether the cloned pMC3R is

capable of producing a biologically active receptor protein,

we transfected the pMC3R construct obtained into

HEK293T cells and analyzed its ligand binding and signaling

properties using the natural agonist for MC3R, g-MSH, and

ligand-binding property with the natural antagonist for

MC3R, AgRP. Human MC3R was used for comparison.

As shown in Fig. 3 and Table 1, g-MSH bound the cloned

pMC3R with an IC50 of 129.07 nM and hMC3R with an

IC50 of 293.00 nM. Both the cloned pMC3R and hMC3R

bound AgRP with similar high affinity: the cloned pMC3R

with an IC50 of 0.67 nM and hMC3R with an IC50 of

2.35 nM. Furthermore, g-MSH also induced dose-depen-

dent accumulations of intracellular cAMP with EC50 of 79.16
and 111.13 nM for the cloned pMC3R and hMC3R

respectively. These results suggested that the cloned

pMC3R encoded a functional MC3R protein.
Binding and signaling of pMC3R to three other MC3R agonists

For in vivo investigationof the role that pMC3Rplays inpigs, the

most potent and selective agonist for pMC3Rmust be selected

from the pool of knownMC3R agonists. Herein, we tested the
Journal of Endocrinology (2008) 196, 139–148



Figure 1 Deduced nucleotide and amino acid sequences of pMC3R and comparison with MC3Rs from other mammal. (A) Sequence of the
full-length pMC3R cDNA with in silico translation is shown. Arrows indicate the position and direction of the primers used for amplification
of the cDNA by PCR. (B) Homology and (C) phylogenetic analysis of MC3R nucleotide sequences from several species.
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Figure 2 Comparison of amino acid sequences between pMC3R and MC3Rs from other species. Alignment of the amino acid sequences
between pMC3R and human, mouse and rat MC3Rs. Positions of different regions of the receptor are indicated above the sequences and
labeled as follows: transmembrane domains as TMD 1–7, extracellular loops as EL 1–3, intracellular loops as IL 1–3, amino and carboxyl
termini as extracellular amino terminus and cytoplasmic tail respectively. The conserved residues are shaded in gray. The transmembrane
residues are in bold. (B) Homology and (C) phylogenetic analysis of MC3R amino acid sequences from several species.
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Figure 3 Expression and functional analysis of the cloned pMC3R in HEK293T cells. HEK293T cells were
transiently transfected with pMC3R and hMC3R, and binding and signaling assays were performed as described in
Materials and Methods. For ligand binding, different concentrations of unlabeled (A) g-MSH or (B) AgRP were used
to displace the binding of 125I-NDP-MSH to pMC3R or hMC3R on intact cells. Results shown are expressed as the
percentageGS.E.M. of the maximal binding from duplicate determinations within one experiment. All experiments
were performed at least thrice. For measurement of cAMPaccumulation, the transfected cells were stimulated with
various concentrations of g-MSH, and intracellular cAMP levels were measured as described in Materials and
Methods. Results are expressed as the meanGS.E.M. of triplicate determinations within one experiment, and all
experiments were performed at least thrice.
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pharmacological properties of three MC3R agonists on the

cloned pMC3R. These agonists include the natural agonist of

MC3R, a-MSH; a superpotent analog of a-MSH for MC3R

andMC4R, NDP-MSH; and a superpotent analog specific for
Table 1 Ligand binding and agonist-stimulated cAMP response of porc
Data shown are the meanGS.E.M. of the indicated number of experime

Ligand binding

MC3R n IC50 (nM)

Ligands
a-MSH Porcine 3 674.90G83.76

Human 3 1151.33G85.54
NDP-MSH Porcine 5 4.36G0.43

Human 5 21.71G2.64
g-MSH Porcine 3 129.07G3.28

Human 3 293.00G21.64
D-Trp8-g-MSH Porcine 3 10.65G3.31

Human 3 90.74G12.46
AgRP Porcine 3 0.67G0.06

Human 3 2.35G0.42

IC50 is the concentration of ligand that is needed to cause 50% inhibition in the bin
of the maximal response. NA, not applicable.

Journal of Endocrinology (2008) 196, 139–148
MC3R, D-Trp8-g-MSH. As shown in Fig. 4, ligand-binding

assays revealed that pMC3R bound NDP-MSH with the

highest affinity (IC50 of 4.36 nM) followed by D-Trp8-g-MSH

(IC50of10.65 nM) anda-MSH(IC50of674.90 nM).The same
ine melanocortin-3 receptor (pMC3R) and human MC3R (hMC3R).
nts

Ligand-stimulated cAMP response

n EC50 (nM) Rmax (pmol/106 cells)

4 59.03G7.51 2854G96
4 70.27G11.97 2765G238
4 2.24G0.24 1286G160
4 5.01G0.87 2438G333
4 79.16G6.05 2354G147
4 111.13G11.78 2623G185
4 1.24G0.58 1894G256
4 1.95G0.64 1972G258
NA NA NA
NA NA NA

ding assay. EC50 is the concentration of agonist that results in 50% stimulation

www.endocrinology-journals.org



Figure 4 Binding and signaling of pMC3R to three other MC3R agonists. HEK293T cells were transiently transfected with pMC3R or hMC3R.
Binding assays were performed as described in Materials and methods. Different concentrations of unlabeled (A) a-MSH, (B) NDP-MSH, or
(C) D-Trp8-g-MSH were used to displace the binding of 125I-NDP-MSH to pMC3R or hMC3R on intact cells. To measure accumulation of
intracellular cAMP, the transfected cells were stimulated with various concentrations of (A) a-MSH, (B) NDP-MSH, or (C) D-Trp8-g-MSH, and
intracellular cAMP levels were measured as described in Materials and methods. Results are expressed as the meanGS.E.M. of triplicate
determinations within one experiment, and all experiments were performed at least thrice.
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ranking was also observed for hMC3R with an IC50 of

21.71 nM for NDP-MSH, 90.74 nM for D-Trp8-g-MSH, and

1151.33 nM for a-MSH. It is interesting to note that pMC3R

always had two- to ninefold higher affinities for these ligands

than the hMC3R (Table 1). The data from the signaling assays

demonstrated that D-Trp8-g-MSHwas the most potent agonist

to stimulate dose-dependent cAMP generationwith an EC50 of

1.24 nM, followed by NDP-MSH (EC50 of 2.24 nM) and

a-MSH (EC50 of 59.03 nM; Table 1). Human MC3R has the

same ranking with an EC50 of 1.95 nM for D-Trp8-g-MSH,

5.01 nM for NDP-MSH, and 70.27 nM for a-MSH (Table 1).

Taken together, these data demonstrated that D-Trp8-g-MSH

was the most potent agonist in eliciting pMC3R signaling.

As can be seen from Table 1, the maximal responses to a-,
g-, and D-Trp8-g-MSH are similar between the pMC3R and

hMC3R. However, the hMC3R has significantly larger

maximal response to NDP-MSH than pMC3R. One reason

might be that hMC3R is expressed at slightly higher level

(148G8% of pMC3R, nZ12). However, the maximal

responses to the other three agonists are similar between the

two MC3Rs. We suggest that the NDP-MSH binding to

hMC3R induces a conformation with higher coupling

efficiency than the pMC3R (Ballesteros et al. 1998).
Discussion

Previous pharmacological and genetic studies in rodents

suggested that the MC3R was not involved in food intake
www.endocrinology-journals.org
regulation. Administration of MC3R-specific agonist such as

g-MSH did not inhibit food intake (Kask et al. 2000). In fact, a

recent study showed that peripheral administration of D-Trp8-

g-MSH stimulated food intake in rats by releasing the inhibitory

effect of the MC3R on POMC neurons (Marks et al. 2006).

Changes in energy balance such as food restriction or diet-

induced obesity did not change MC3R expression level in the

brain, whereas theMC4Rdensitywasmodulated (Harrold et al.

1999). Finally, MC3R knockout mice did not have increased

food intake as did theMC4Rknockoutmice (Huszar et al. 1997,

Butler et al. 2000, Chen et al. 2000). Mice lacking the MC3R

have increased fat contents but are normal in termsoffood intake

andbodyweight (Butler et al. 2000,Chen et al. 2000), suggesting

that the MC3R pathway modulates feeding efficiency and fat

storage. The recent gene targeting study by Zhang et al. (2005)

showed that Black Swiss 129 mice lacking MC3R gene had a

comparable level of adiposity as mice lacking the MC4R gene.

In humans, only a few naturally occurring mutations in the

MC3R gene have been identified (Lee et al. 2002, 2007, Tao

2007). Thesemutationswere found to cause defects in signaling

(Rached et al. 2004, Tao & Segaloff 2004, Lee et al. 2007, Tao

2007). In contrast, in the MC4R, numerous mutations have

been identified from various patient populations (reviewed in

Tao 2005, 2006). Therefore, the roles of the MC3R in energy

homeostasis are much less understood.

Pork is an important protein source in our diet. About 60%

of the saturated fat comes from animal products in typical

American diet. Leaner meat will decrease intake of saturated
Journal of Endocrinology (2008) 196, 139–148



Z-C FAN and others . Porcine melanocortin-3 receptor146
fat and decrease blood cholesterol levels. To increase the

economic return for hog farmers and reduce the obesity

epidemic, it is of great interest to decrease the fat content in

pork. Therefore, a better understanding of fat storage in pigs is

of great economic interest.

In the present study, as the first step towards elucidating the

role(s) of the MC3R in pig energy homeostasis, we describe

the molecular cloning and pharmacological characterization

of the porcine MC3R. Through bioinformatics analysis and

progress in pig genome sequencing, we were able to identify

the putative full-length coding region of pMC3R. Primers

designed based on this sequence were used to amplify the

coding region from pig genomic DNA by taking advantage of

the fact that the mammalian MCRs, including the putative

pMC3R, are intronless. This amplified fragment was inserted

into pcDNA3.1 and the sequence verified.

This construct was used for detailed pharmacological

analysis using a series of ligands. From ligand-binding studies,

we showed that of the four agonists tested, the rank order in

terms of affinity is: NDP-MSHOD-Trp8-g-MSHOg-
MSHOa-MSH. Human MC3R has the same rank order

for these ligands. From signaling experiments, we showed that

the rank order in terms of potency for these four ligands is:

D-Trp8-g-MSHONDP-MSHOa-MSHOg-MSH. Again,

hMC3R has the same rank order for these ligands. Both

pMC3R and hMC3R bind to AgRP with high affinity, with

IC50 of 0.67 and 2.35 nM respectively.

Previously, the MC3Rs have been cloned from a number

of species, including human (Gantz et al. 1993a), rat

(Roselli-Rehfuss et al. 1993), mouse (Desarnaud et al.

1994), and elephant (Rompler et al. 2006). In lower

vertebrates, the MC3Rs have been cloned from the chicken

(Takeuchi & Takahashi 1999) and zebrafish (Logan et al. 2003)

but was found to be absent in some other fishes such as the

pufferfishes (Klovins et al. 2004a). The numbers we reported

herein for pMC3R are roughly in line with previous studies.

For example, with NDP-MSH, the most commonly used

analog for MCR studies, the IC50 reported here for pMC3R

is 4.36 nM. Previously, the Kd for rat MC3R was reported to

be 3.78 nM (Kim et al. 2002), and the Ki for human MC3R

was 5.6 nM (Chen et al. 2006), and for the dogfish MC3R

was 0.93 nM (Klovins et al. 2004b).

In the original publication describing the discovery of

D-Trp8-g-MSH as a potent and selective MC3R agonist

(Grieco et al. 2000), an IC50 of 6.7 nM and EC50 of 0.33 nM
were reported for hMC3R. Our data for hMC3R are

somewhat higher than those reported before (IC50 of

90.74 nM and EC50 of 1.95 nM). These differences might

be due to the use of different cell lines and different methods

in the two studies. For example, for binding studies, Grieco

et al. used membranes prepared from L cells stably expressing

hMC3R, whereas we used live HEK293T cells transiently

expressing hMC3R (only cell surface receptor binding is

detected). However, our data for pMC3R (IC50 of 10.65 nM
and EC50 of 1.24 nM) are very close to the numbers reported

for hMC3R by Grieco et al. (2000).
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It should be pointed out that the ranking in terms of affinity

is not the same as that in terms of potency. For example, for

pMC3R, NDP-MSH has higher binding affinity than

D-Trp8-g-MSH. However, it is not as potent in eliciting

activation of signaling pathways as the latter. This may be due

to the difference in their relative efficacies. Both affinity and

efficacy can independently affect the potency of a particular

ligand (Besse & Furchgott 1976).

The data presented herein suggest that D-Trp8-g-MSH is a

superpotent agonist for the pMC3R. Since it does not

activate the MC4R efficiently (Grieco et al. 2000), it is an

excellent tool for in vivo studies directed towards dissecting

the role(s) of the MC3R in regulating pig energy balance.

However, the in vitro data described herein should only be

used as the starting point for further in vivo studies. Previous

studies showed that pMC4Rs respond to the natural (AgRP)

and artificial (SHU9119) antagonists normally in vitro.

However, in vivo, these antagonists do not increase food

intake as observed in rodents (Barb et al. 2004). It was

suggested that the MC4R might not play a critical role in

regulating feed intake in the pig (Barb et al. 2004). Similarly,

two naturally occurring mutations (R236H and D298N) in

the pMC4R were identified in different strains of pigs that are

associated with differences in performance characteristics such

as average daily gain and average daily intake as well as carcass

fat (Kim et al. 2000, Meidtner et al. 2006). In the case of

D298N, not all studies could confirm the original associations

(Park et al. 2002, Stachowiak et al. 2006). Similarly, our

experiments in vitro could not replicate the original functional

studies (Kim et al. 2004, Fan et al. 2007). Therefore, the data

on the naturally occurring mutations in the pMC4R are also

much less convincing than those on humanMC4R (reviewed

in Tao (2005, 2006)). All these point to the importance of

using caution when extrapolating in vitro data as well as the

potential difference of the relevance of the melanocortin

system in regulating energy homeostasis in the pig.

In summary, we have cloned the pMC3R. Expression of

the cloned pMC3R in HEK293T cells revealed that indeed it

was functional. Pharmacological characterizations using a

series of ligands revealed that the pMC3R and hMC3R have

the same rank orders for these ligands. We showed that

D-Trp8-g-MSH was the most potent ligand (and selective for

the MC3R), therefore, best suited for further in vivo studies to

elucidate the functional importance of the MC3R in energy

homeostasis in the pig.
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