#### Cardiac Biomarkers Uses and Limitations

Randolph L. Winter, DVM, DACVIM Assistant Professor, Cardiology PhD candidate, Biomedical Sciences Auburn University



#### Outline

- Introduction
- Testing Strategies
- Clinical Use
- and limitations
- Biologic Variability
- Summary



#### INTRODUCTION



#### What is a Biomarker?

- · Measurable substance that indirectly informs about organ health
  - Specific to the organ / tissue
  - Released in proportion to the degree of disease
    - greater damage = greater amounts measured



#### Organ-specific biomarkers

- Liver biomarker
  - Alanine transferase (ALT)
- · Cardiac biomarker
  - B-type natriuretic peptide (BNP)
  - N-terminal pro-B-type natriuretic peptide (NTproBNP)
  - Cardiac troponin I (cTnI)
  - Atrial natriuretic peptide (ANP), and N-terminal pro-Atrial natriuretic peptide (NTproANP)



#### Liver disease

- How can we know how healthy a patient's liver is?
  - Abdominal palpation
  - Abdominal radiographs
  - Abdominal ultrasonography
  - Blood values such as ALT
  - Liver biopsy
    - Fine-needle aspirate

    - Laparoscopic biopsy
       Laparotomy to obtain biopsy



#### ALT

- Present primarily in the hepatocyte cytosol
- ALT released with hepatocyte damage - circulates in the systemic blood stream
- $\uparrow \uparrow \uparrow ALT = \uparrow \uparrow \uparrow Liver Damage$



#### Cardiac disease

- How can we assess cardiac health/disease?
  - Cardiac auscultation
  - Thoracic radiographs
  - Echocardiography (cardiac ultrasound)
  - Blood markers such as cTnI or BNP
     Cardiac Magnetic Resonance Imaging
  - Endomyocardial biopsy

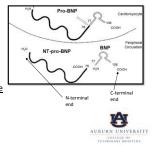




#### Cardiac biomarkers

- N-terminal pro B-type Natriuretic Peptide (NTproBNP)
- cardiac troponin I (cTnI)
- B-type Natriuretic Peptide (BNP)
- N-terminal pro Atrial Natriuretic Peptide (NTproANP)
- Atrial Natriuretic Peptide (ANP)




#### Cardiac biomarkers

- N-terminal pro B-type Natriuretic Peptide (NTproBNP)
- cardiac troponin I (cTnI)
- B-type Natriuretic Peptide (BNP)
- N-terminal pro Atrial Natriuretic Peptide (NTproANP)
- Atrial Natriuretic Peptide (ANP)



#### Natriuretic peptides (NP)

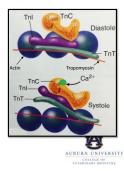
- pro-BNP and pro-ANP stored
  - as granules
  - mostly atrial tissue
     lesser degree in ventricular tissue
- Many pro-ANP peptides stored as granules
  - pro-BNP peptides production upregulated in ventricular m.
- C-terminal end is the <u>active</u> <u>hormone</u>



#### Natriuretic peptides

- Volume Overload = Atrial/Ventricular Stretch
- NPs released to excrete
   Sodium/Water
- Chronic volume overload = ↑ BNP/ANP production in myocardium






#### Natriuretic peptides

|      | Concentration | ns of natriuretic pepti | de hormone segmen     | ts over time        |
|------|---------------|-------------------------|-----------------------|---------------------|
| 35   | 10            |                         |                       |                     |
| 30   |               |                         |                       | NTproBNP            |
| 25   |               |                         |                       | •                   |
| 20   | •             |                         |                       |                     |
| 15 — |               | $\backslash$            |                       |                     |
| 10   |               |                         |                       |                     |
| 5 —  |               |                         |                       |                     |
| 0 —  |               |                         |                       | BNP                 |
|      | Time point 0  | Time point 1            | Time point 2          | Time point 3        |
|      | Hal           | f-life: BNP = 90 second | ls; NTproBNP = 20 mii | nutes 🙆             |
|      |               |                         |                       | AUBURN UNIVERSITY   |
|      |               |                         |                       | VETERINARY MEDICINE |
|      |               |                         |                       |                     |

## Cardiac troponin I (cTnI)

- Troponin subunits are associated with tropomyosin
  - Both cardiac and skeletal muscle
     troponin subunits C and T
  - $\hspace{0.1 cm}$  the I subunit = only cardiac



#### Cardiac troponin I

- cTnI mostly bound to the contractile unit
   Only ~3% cTnI found free in cytosol
- Cardiomyocyte damage = cTnl leaks into the interstitium
   taken up by cardiac lymphatics
- cTnl then present in systemic circulation
   lymphatics overwhelmed
- Likely excreted passively by kidneys



#### Cardiac troponin I

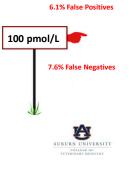
- Healthy hearts do not have high concentrations in circulation
- Level of circulating cTnl in circulation corresponds to the degree of damage
  - cardiomyocyte specific



#### **TESTING STRATEGIES**



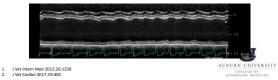
#### Screening


- Hypertrophic Cardiomyopathy in cats
- Dilated Cardiomyopathy in dogs
- Myxomatous Mitral Valve Disease in dogs
  - NOT NEEDED
  - AUSCULTATION PREFERRED



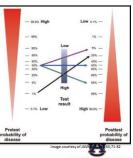
#### Screening - HCM

- NTproBNP in 201 cats (99 = normal)<sup>1</sup>
  - NTproBNP > 100 pmol/L detected HCM (92.4% sens. and 93.9% spec.)
  - Cats with NTproBNP <100 were unlikely to have HCM
- 92.4% of cats with the disease will test positive (> 100 pmol/L)
- 93.9% of cats <u>without</u> the disease will test negative (<100 pmol/L)</li>


1. Vet Clin Pathol 2011:40:237-244



Screening - DCM

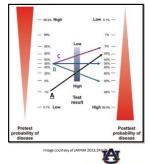

- NTproBNP in 155 Doberman Pinschers<sup>1</sup>
  - NTproBNP > 500 pmol/L = likely systolic dysfunction
  - NTproBNP < 500 pmol/L = likely normal LV function</p>

- Screening for Arrhythmia = ECG +/- Holter<sup>1,2</sup>



#### Testing strategy

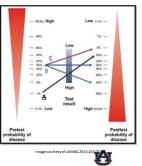
- <u>Not every animal needs</u> cardiac biomarkers measured
- Minimizes false positive
- Clinical decision-making process
- False positives = worry and extra test




AUBURN UNIVERSITY COLLEGE OF VETERINARY MEDICINE

#### Testing strategy

- Consider case <u>A</u>

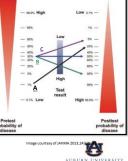

   Very low likelihood of disease (1%)
  - Pretest
     High positive only raises likelihood of
  - disease a small amount
     1% -> 20%
  - 80% chance of false positive
     case decision making
- A 1 yo DSH cat, clinically healthy without any history or physical exam signs of cardiovascular disease = low probability of disease
  - Not appropriate to measure NTproBNP as part of the preanesthetic bloodwork for this cat's spay



AUBURN UNIVERSITY COLLEGE OF VETERINARY MEDICINE

#### Testing strategy

- Consider case B
  - Start with a 50/50 chance
    Now test result = very helpful
  - High test result = 95% chance of disease
    - Case decision making
- Measuring NTproBNP in a cat with a murmur
  - A high NTproBNP value = Echocardiography good




#### AUBURN UNIVERSITY COLLEGE OF VETERINARY MEDICINE

#### Testing strategy

- Consider case C
  - 50/50 chance of disease
    Low test result = 5% chance of
  - disease
- Adult cat with respiratory distress
  - Ddx: Congestive heart failure vs 1° resp. disease
  - Normal NTproBNP rules out
     CHF





AUBURN UNIVERSITY COLLEGE OF VETERINARY MEDICINE



#### **CLINICAL USE**



#### NTproBNP in cats

- SNAP<sup>®</sup> Feline Cardiopet<sup>®</sup> proBNP Test
  - Results within 10 minutes
  - Requires just a few drops of blood
- Normal = < ~100 pmol/L<sup>1</sup>
- Abnormal = > ~270 pmol/L<sup>1</sup>
- Normal results help rule out CHF

| Bion or and a strength of the |        |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |  |  |
| Abnormal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Normal |  |  |

A UNIVERSITY

AUBURN

1. J Vet Cardiol 2014;16:245

### PREDICTing heart failure

- MMVD ACVIM stage B2 dogs<sup>1</sup>
  - Thx rads, Echo, NTproBNP, BP
  - NTproBNP > 1500 pmol/L
    - 个Risk of CHF <u>within 6 months</u>



#### Clinical Case - MMVD

- 7 year old MN CKCS
- Tests:
  - Thx rads
  - Echo
  - BP
- CBC/Panel/UA
- Follow-up: – Thx rads in 8
  - months – BP in 8 months

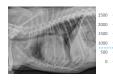


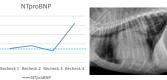

AUBURN UNIVERSITY

#### **Clinical Case - MMVD**

• Scenario #1

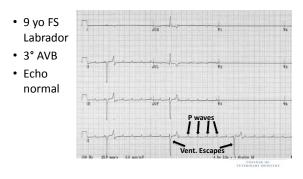




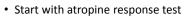


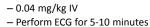

#### Clinical Case - MMVD

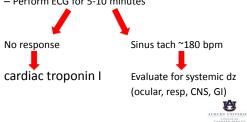

• Scenario #2



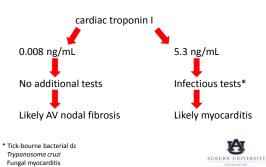






#### Clinical Case – 3° AVB







Clinical Case - 3° AVB







#### Clinical Case - 3° AVB



#### Cardiac Troponin I

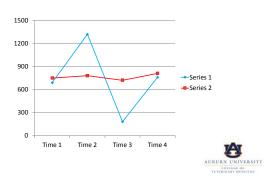
#### • Remember!!

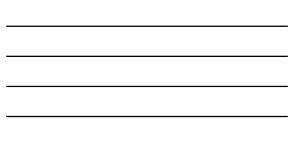
- each lab generates own reference range
- different labs may not be comparable
- Standard- vs. High-sensitivity assays
  - Standard: All Healthy dogs and 68% MMVD had undetectable values (below limit of detection)<sup>1</sup>
  - High-sens: 31% healthy and NO MMVD dogs had undetectable values<sup>1</sup>

1. J Vet Cardiol 2017;19:124

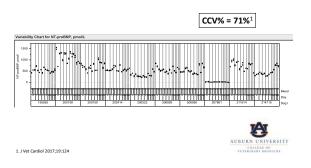


#### **BIOLOGIC VARIABILITY**

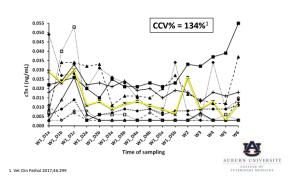




#### **Biologic Variability**

- The natural change that occurs in an analyte value, independent of disease severity progression
  - E.g. changes in biomarker values in a healthy dog
  - E.g. changes that occur over some time period in a dog with stable (non-progressive) disease
- Within-subject, between-subject, analytical variation
   Critical Change Value %




Scientific Line Graph






#### NTproBNP in Normal Dogs



# cTnl in Normal Dogs



#### BV in MMVD dogs

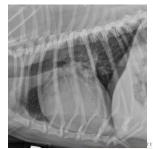
| Disease state                                              | Dogs<br>(N)               | Samples<br>(N)                        | CCV-95% (95)                                                                     | % CI)                      |                       |
|------------------------------------------------------------|---------------------------|---------------------------------------|----------------------------------------------------------------------------------|----------------------------|-----------------------|
| Healthy<br>MMVD B1<br>MMVD B2<br>MMVD C-stable<br>All MMVD | 10<br>10<br>10<br>8<br>28 | 160<br>40<br>40<br>32<br>112 <b>(</b> | 70.8% (62.3-8<br>73.4% (64.6-8<br>51.4% (45.2-5<br>53.3% (46.9-6<br>58.2% 51.2-6 | 85.2%)<br>59.6%)<br>61.9%) | NTproBNP<br>CCV = 58% |
|                                                            |                           |                                       |                                                                                  |                            |                       |
|                                                            | Dogs (n)                  | Samples                               | (n) CV <sub>1</sub> cTnl                                                         | CCV*                       |                       |
| Healthy                                                    | Dogs (n)<br>10            | Samples                               | (n) CV <sub>1</sub> cTnl<br>48%                                                  | CCV*<br>134%               | cTnl                  |
| Healthy<br>MMVD B1                                         | 0.11                      | 1.1.1                                 | 17 11                                                                            |                            | cTnl<br>CCV = 110%    |
|                                                            | 10                        | 111                                   | 48%                                                                              | 134%                       | •••••                 |
| MMVD B1                                                    | 10<br>10                  | 111<br>40                             | 48%<br>42%                                                                       | 134%<br>118%               | •••••                 |

#### How to Apply BV

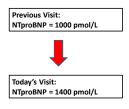
• Revisit PREDICT study (MMVD)<sup>1</sup>

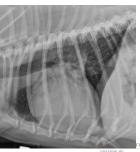
 NTproBNP > 1500 pmol/L associated with development of CHF at or prior to next visit

• Normal BV for MMVD is <58% for NTproBNP<sup>2</sup>




1. J Vet Cardiol 2012;14:193 2. J Vet Cardiol 2017;19:124


1. 2.

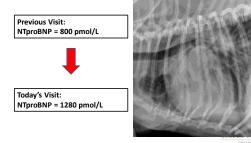

> Patient 1 CCV=58% NTproBNP change of 40%

Previous Visit: NTproBNP = 1000 pmol/L



#### Patient 1 CCV=58% NTproBNP change of 40%






Patient 2 CCV=58% NTproBNP change of 60%

Previous Visit: NTproBNP = 800 pmol/L



# Patient 2 CCV=58% NTproBNP change of 60%



#### Summary

- Cardiac biomarkers aren't for every patient
  - Screen for HCM in cats and DCM in Dobies
  - Test to minimize false positives
- Higher values = greater disease - Helps determine follow-up tests or referral
- Monitor trends



**Questions?**