The Renin-Angiotensin-Aldosterone System: Pathologic Implications and Strategies to Break the Cycle

Presentation Notes

Daniel Newhard, DVM

AUVA Cardiology Seminar 2018

Heart failure (HF)

- Heart failure defined as clinical symptoms associated with the heart's inability to provide sufficient cardiac output to meet the body's metabolic demands
- Congestive heart failure defined as the clinical signs associated with fluid accumulation secondary to cardiac decompensation
- Systolic dysfunction myocardial infarction, DCM, ARVC
- Diastolic dysfunction systemic hypertension, HCM, RCM, UCM
- Combination

Neurohormonal response to HF

- Decreased cardiac output \rightarrow decreased renal perfusion \rightarrow stimulates renin and ADH release
- Decreased cardiac output \rightarrow increased sympathetic tone \rightarrow stimulates renin release
- Decreased cardiac output and stimulation of RAAS \rightarrow natriuretic peptide (NP) release

RAAS

- Role of RAAS is to replenish vascular volume via Na and water retention
- Stimulators of RAAS
 - o Hypovolemia
 - Hypotension
 - o Hyponatremia
 - Sympathetic tone
 - Iatrogenic furosemide, amlodipine
- RAAS pathway
 - Renin released by juxtaglomerular cells of the renal afferent arterioles
 - Renin converts angiotensinogen (from the liver) to angiotensin I
 - Angiotensin converting enzyme (ACE) converts angiotensin I to angiotensin II in plasma and tissues
 - ACE is produced in endothelial cells; most concentrated in the lungs
 - Angiotensin II stimulates:
 - Aldosterone release
 - ADH release
 - Vasoconstriction (one of the most potent)
 - Fibrosis myocardium and kidneys most affected
 - Na reabsorption
 - Negative myocardial energy balance
 - Thirst
 - Aldosterone then leads to:
 - Na reabsorption
 - Fibrosis

Plasma vs. tissue RAAS

- 10% of all ACE activity is in the plasma
- Remaining 90% of ACE activity is in tissues mainly in the myocardium and kidneys
 - Non-ACE pathways responsible for converting angiotensin I to angiotensin II
 - Chymase, cathepsin G

Aldosterone breakthrough

- Definition
 - Increased aldosterone concentrations despite ACE-inhibitor or angiotensin receptor blocker (ARB) therapy
 - Increased a certain % from baseline
 - Increased above a specific cutoff value
- Incidence
 - Aldosterone concentrations increase within 7 days of treatment with furosemide and ACEinhibitors in healthy dogs
 - ~ 30% incidence in dogs treated for CHF

What can we do to try and stop this process?

- ACE-inhibitors
 - o Classically, these have been used to prevent conversion of AT-I to AT-II
 - Strong benefit shown in humans in the past few decades
 - Debatable benefit in dogs, but overall most likely beneficial
 - o Aldosterone breakthrough still occurs in humans and dogs despite their use
- Angiotensin receptor blockers (ARBs)
 - Used in place of ACE-inhibitors in humans if ACE-inhibitors are not well-tolerated
 - May not be superior to ACE-inhibitors in humans
 - o Not evaluated extensively in clinical veterinary patients
 - o Aldosterone breakthrough still occurs
- Spironolactone
 - Improved morbidity and mortality in humans and dogs
 - Shows the impact aldosterone can have on prognosis

What can the heart do to stop this process?

- Natriuretic peptides (NP)
 - Peptides released from the atrial and ventricles
 - Body's own anti-RAAS hormonal system
 - Inhibits renin release
 - Inhibits sympathetic tone
 - Inhibits angiotensin II release and production
 - Inhibits aldosterone release
 - Reduces hypertrophy
 - Improves myocyte metabolism
 - Increased GFR
 - Angiogenesis
 - Vasodilation
 - o Production
 - Atrial NP (ANP) mostly from the atrial

- Brain NP (BNP) mostly from the ventricles
- o Release
 - Released during stretch and increased wall tension of the cardiac chambers
- o Clearance
 - Removed via clearance receptors and neprilysin (enzyme)
 - Inhibiting neprilysin prevents NP degradation \rightarrow increases NP concentrations

Using natriuretic peptides to mitigate RAAS

- Administering exogenous NPs
 - Lowers BP
 - o Enhances GFR
 - o Mediates natriuresis and diuresis
 - Suppresses RAAS + inhibits aldosterone
 - Anti-fibrotic effects
- Inhibiting neprilysin
 - o Lowered BP
 - Not superior to ACE-inhibitors
 - Neprilysin degrades angiotensin II
 - Simultaneous RAAS suppression is necessary with neprilysin inhibition therapy or angiotensin II levels increased drastically → increased morbidity
- Entresto (Novartis) was developed
 - Combination of sacubitril (neprilysin inhibitor) + valsartan (angiotensin receptor blocker)
 - Reduced morbidity and mortality in humans by 20% compared to enalapril
 - o Less renal adverse effects vs. enalapril
 - Improved quality of life vs. enalapril
 - o Became standard of care for HF in humans in place of ACE-inhibitors
- Proof of mechanism study with Entresto performed in dogs (Dr. Mochel et al.)
 - Healthy dogs with experimentally-induced RAAS activation
 - Compared Entresto to:
 - Placebo
 - Benazepril
 - Valsartan
 - Entresto caused a significantly greater reduction in plasma aldosterone concentrations compared to all other medications
 - Renin and angiotensin II levels increased to a greater extent in the Entresto group, showing its efficacy at interrupting the RAAS
 - o cGMP increased to a greater extent in the Entresto group
 - cGMP is a secondary messenger in the NP cascade
 - No adverse effects
- Entresto in dogs with naturally occurring myxomatous mitral valve disease
 - o Clinical trial performed at the AUVTH
 - Inclusion criteria small-breed dogs with stage B2 MMVD
 - All patients enrolled were on pimobendan as standard of care
 - Minimum database performed in all patients to rule out systemic disease
 - o Methods

- Two groups placebo group (PO BID) and Entresto group (20 mg/kg PO BID)
- Sampling occurred on day 0 (initial screening day), day 7, and day 30
 - Serum renal profile and electrolytes days 0, 7, and 30
 - Thoracic radiographs days 0 and day 30
 - Systolic blood pressure (Doppler) days 0, 7, and 30
 - Echocardiography days 0 and day 30
 - Plasma NT-proBNP concentrations days 0, 7, and 30
 - Urine aldosterone:creatinine concentrations days 0, 7, 30

o Results

- Urinary aldosterone:creatinine concentrations significantly lower in the Entresto group
- No change in NT-proBNP concentration between groups
- No changes to renal values or electrolyte concentrations
- No adverse effects noted at home
- o Conclusion
 - Entresto appears to be effective at lowering/preventing an increase in aldosterone concentrations in dogs with naturally occurring MMVD
- Future directions
 - Comparing Entresto to ACE-inhibitors in stage B2 dogs
 - Comparing morbidity and mortality between Entresto and ACE-inhibitors in stage C dogs

Summary

- The RAAS is detrimental to our patients, increasing morbidity and mortality
- Current standard of care medications may not be mitigating the detrimental effects of RAAS as well as we would like
- Entresto or drugs with similar mechanisms of action may be beneficial for medical therapy of congestive heart failure in veterinary patients.