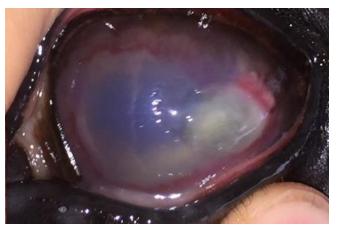


OCULAR CYTOLOGY

Ethan Hefner, DVM Ophthalmology Resident


Uses for cytology

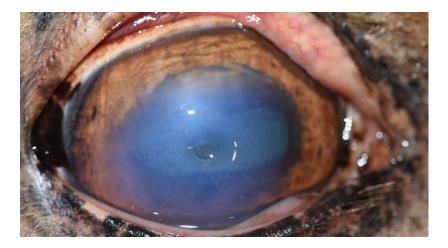
Cornea-ulcers/infectious keratitis

Conjunctiva-Eosinophilic keratitis/keratoconjunctivitis

Eyelids/Adnexa-mass/neoplasia

Advantges of cytology

- Safe
- Inexpensive
- Immediate results

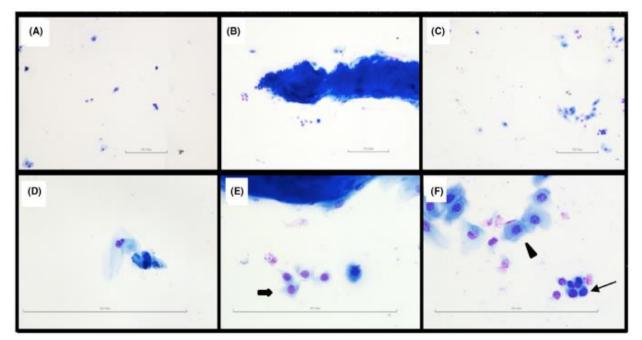


- Guide therapeutic treatment
- In-vivo assessment of treatment efficacy
- Culture/Sensitivity-In-vitro assessment of treatment efficacy

When to use?

Initial evaluation for infectious keratitis, nonhealing, or complicated ulcer

- Clinical signs indicating use?
 - CORNEA-complicated ulcer
 - Conjunctiva- hyperemia, chemosis, follicles, mass
- Contraindications?
 - Deep stromal ulcer
 - Descemetocele
 - Perforation


Sampling of these tissues?

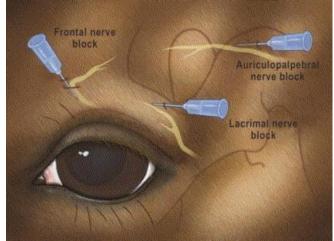
Ideal Cytology Sample

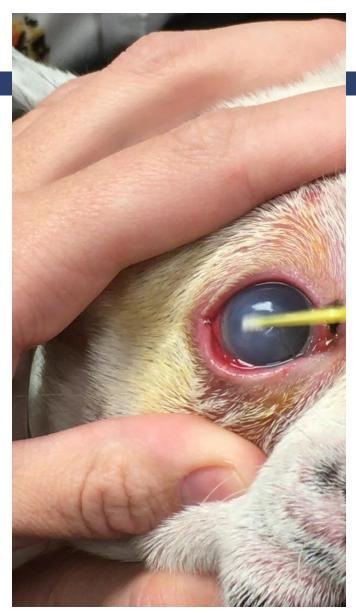
- Cellular! (Monolayer-well preserved)
- Representative of lesion (intermediate, cornified, mature epithelial cells)
- Minimal irritation to patient

Collection Methods

- Cotton Tipped Applicator (CTA)
- Cytobrush (CB)
- Kimura Spatula (KS)
- Scalpel Blade (SB)

Equipment Required

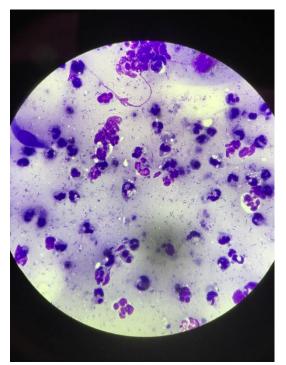

Instrument of choice
Clean glass slides
Culture tubes (ACT II)

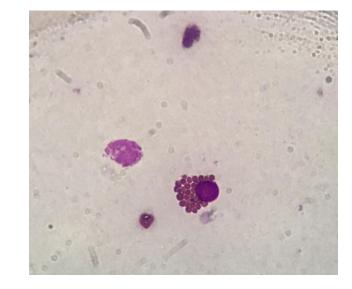

Patient Preparation

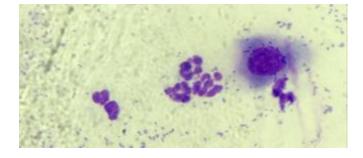
- Sedation- detomidine 0.01-0.03 mg/Kg or xylazine (0.02-1mg/kg IV) +/- butorphanol (0.02mg/kg IV)
- Auriculopalpebral and supraorbital/frontal block-Lidocaine or carbocaine
- Proparacaine

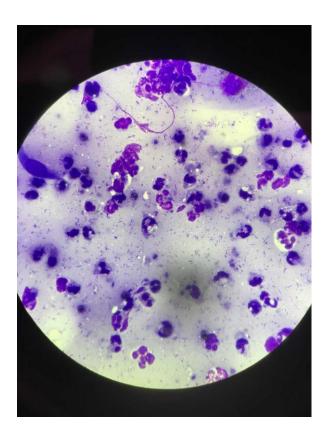
Sample collection

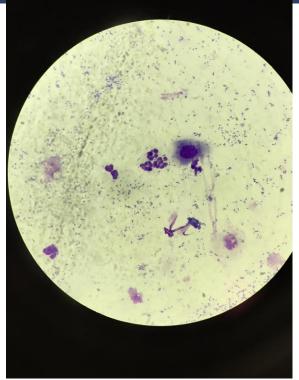
- Area of infiltrate
- Periphery of ulceration
- Not within center-necrotic debris

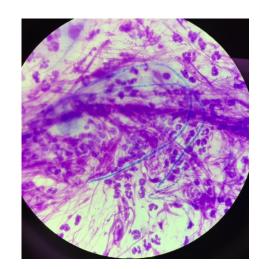

Preparing Cytology


- Clean glass slides-distribute evenly-monolayer
- Romanowsky Stains
 - Wright Giemsa
 - Diff Quick
- Gram stain
- Special stains (FUNGUS)
 Periodic Acid Schiff (PAS)
 - Gomori's methanamine silver stain
 - Clinical Pathologist review




Cellular elements
 Epithelial cells
 White blood cells




- Microbial elements
- Bacteria
 - Rods
 Cocci
 Bipolar rods

- Microbial elements
- Fungi
 - Hyphae-spaghetti like within epithelial cells Negative staining, parallel walls, septae

- Nuclear streaming
- Melanin granules
- Foreign Bodies
- Mineralized crystals

WILEY

Comparison of 3 corneal cytology collection methods for evaluating equine ulcerative keratitis: Cytobrush, kimura platinum spatula, and handle edge of scalpel blade

Laura Proietto¹ | Sarah S. Beatty² | Caryn E. Plummer¹

- 20 horses with ulcerative keratitis evaluated with KS, SB, and CB in random order.
- Cellularity greatest with scalpel blade
- 28/120 samples non-diagnostic- 23%, most common with kimura spatula (15/40)
- □ No difference in technique and maturity
- □ No difference in sample quality (intact to fragmented cells)
- Multilayers more prominent in CB and SB
- \Box 12/20 animals had positive culture
- Culture and cytology consistent in 18/20 animals

TABLE 3 SB has the highest sensitivity and negative predictive value (NPV), and KS has the highest specificity and positive predictive value (PPV) compared to results of bacterial and fungal culture after analysis of 10 serial monolayer cell populations under 50× oil immersion

	Sensitivity %	Specificity %	PPV %	NPV %	
Technique	(Mean ± 95% CI)	(Mean ± 95% CI)	(Mean ± 95% CI)	(Mean ± 95% CI)	Nondiagnostic %
Cytobrush CB	60.87 ± 19.42	87.5 ± 10.95	87.5 ± 8.88	60.87 ± 11.83	25
Kimura spatula KS	50 ± 20.88	100 ± 20.59	100	57.14 ± 9.41	37.5
Scalpel blade SB	70.83 ± 16.55	93.75 ± 6.09	94.44 ± 4.70	68.18 ± 12.01	12.5

KS produced the most nondiagnostic samples.

- SB most diagnostic samples but all three techniques are clinically useful in evaluating equine ulcerative keratitis
- Cytology for detecting microbial keratitis 60.7% sensitivity 93.75 % specificity
- Cytology reported to correlate with culture results with a PPV and NPV of 73% and 52% in the horse
- Culture results 50% bacterial
 25% fungal
 25% mixed population

Conclusions

- Safe
- Inexpensive
- Quick
- May improve case outcome or expedite treatment
- Scalpel blade yields most diagnostic sample with highest cellularity
- Establishes baseline for case progression

Resources

- Gelatt, K. N., Gilger, B. C., & Kern, T. J. (2013). Veterinary ophthalmology. Ames: Wiley-Blackwell.
- □ Gilger, B. C., & Gilger, B. C. (2017). Equine ophthalmology (3rd ed.). Ames, IA: Wiley Blackwell.
- Proietto, L., Beatty, S. S., & Plummer, C. E. (2018). Comparison of 3 corneal cytology collection methods for evaluating equine ulcerative keratitis: Cytobrush, kimura platinum spatula, and handle edge of scalpel blade. Veterinary Ophthalmology. doi:10.1111/vop.12574

