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In Alzheimer’s disease (AD), human Tau is phosphorylated at S199
(hTau-S199-P) by the protein kinase glycogen synthase kinase 3β
(GSK3β). HTau-S199-P mislocalizes to dendritic spines, which induces
synaptic dysfunction at the early stage of AD. The AKT kinase, once
phosphorylated, inhibits GSK3β by phosphorylating it at S9. In AD
patients, the abundance of phosphorylated AKT with active GSK3β
implies that phosphorylated AKT was unable to inactivate GSK3β.
However, the underlying mechanism of the inability of phosphory-
lated AKT to phosphorylate GSK3β remains unknown. Here, we
show that total AKT and phosphorylated AKT was sulfhydrated at
C77 due to the induction of intracellular hydrogen sulfide (H2S). The
increase in intracellular H2S levels resulted from the induction of the
proinflammatory cytokine, IL-1β, which is a pathological hallmark of
AD. Sulfhydrated AKT does not interact with GSK3β, and therefore
does not phosphorylate GSK3β. Thus, active GSK3β phosphory-
lates Tau aberrantly. In a transgenic knockin mouse (AKT-KI+/+) that
lacked sulfhydrated AKT, the interaction between AKT or phospho-
AKT with GSK3β was restored, and GSK3β became phosphorylated.
In AKT-KI+/+ mice, expressing the pathogenic human Tau mutant
(hTau-P301L), the hTau S199 phosphorylation was ameliorated as
GSK3β phosphorylation was regained. This event leads to a de-
crease in dendritic spine loss by reducing dendritic localization of
hTau-S199-P, which improves cognitive dysfunctions. Sulfhydration
of AKT was detected in the postmortem brains from AD patients;
thus, it represents a posttranslational modification of AKT, which
primarily contributes to synaptic dysfunction in AD.
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Alzheimer’s disease (AD) is characterized by a progressive
loss of memory, cognitive impairments, behavioral difficul-

ties, and ultimately death (1–3). Synaptic dysfunction and hence
memory impairments emerge early in the disease process (1, 4,
5). The microtubule-associated protein Tau is most abundant in
the neuronal axons in healthy cells; however, at the early stages
of AD, Tau can be mislocalized to dendrites after its specific
phosphorylation at S199 (6–8). Human Tau (hTau) phosphory-
lation at S199 triggers synaptotoxicity independent of Tau ag-
gregation and correlates with memory impairment in AD (9–11).
Among the kinases that phosphorylate Tau, glycogen synthase
kinase 3β (GSK3β) is implicated in AD pathology because acti-
vation of GSK3β is essential for Tau phosphorylation at S199
(12–16). However, the molecular mechanism responsible for Tau
phosphorylation at S199 remains poorly understood.
GSK3β is a constitutively active kinase that is inactivated by

phosphorylation at S9 (17, 18). In GSK3β-S9A transgenic mice
overexpressing hTau, Tau phosphorylation was increased (19).
AKT is a serine/threonine kinase that phosphorylates GSK3β at
S9 (20, 21). Thus, AKT plays a critical role in the modulation of
GSK3β activity. Therefore, engagement of signaling pathways
that activate AKT results in the phosphorylation of GSK3β at S9,
followed by down-regulation of GSK3β activity (22). AKT is ac-
tivated by phosphorylation at T308 and S473, which are located in
the regulatory domain of the enzyme (20, 23). The brains of AD

patients contain highly abundant levels of active phosphorylated
AKT (24, 25) concomitant with an increase in GSK3β activity
(26–28). However, it remains undetermined how GSK3β remains
activated even in the presence of phosphorylated AKT.
The early induction of inflammatory cytokines is the most

common feature in vulnerable areas of AD patients’ brains and
body fluids (29–32). These inflammatory cytokines are associ-
ated with the cognitive decline observed in AD patients (33).
Previously, we showed that the proinflammatory cytokine, IL-1β,
could induce intracellular hydrogen sulfide (H2S) levels by
augmenting the expression of cystathionine β-synthase (CBS), which
catalyzes the formation of H2S (34). H2S is a gasotransmitter that
activates intracellular signaling pathways through the sulfhydration
of proteins. This modification occurs when the sulfur from H2S
attaches to a cysteine residue (–SH) of a protein and converts it
to –SSH (35, 36).
In the present study, we show that sulfhydration of total or

phosphorylated AKT inhibits its interaction with GSK3β and
subsequently down-regulates the phosphorylation and inactiva-
tion of GSK3β. The activated GSK3β facilitates Tau phosphor-
ylation and cognitive dysfunction. In AKT knockin mice (AKT-
KI+/+), where the sulfhydration of AKT was blocked, early Tau
phosphorylation at S199 was attenuated upon stimulation with
the proinflammatory cytokine, IL-1β.

Results
IL-1β Induces H2S-Dependent Tau Phosphorylation at S199. Tau can
be mislocalized to dendrites after its specific phosphorylation at
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S199 (6–8). Therefore, we monitored the phosphorylation of Tau
at S199 in AD patients’ brains and a mouse model of AD (PS19).
PS19 mice contain the hTau mutant (hTau-P301S) that is char-
acterized by impaired synaptic function before fibrillary Tau
tangles emerge at the age of 6 to 8 mo (37). We found that Tau
phosphorylation at S199 was abundant in both AD patients’
brains (Fig. 1A and SI Appendix, Fig. S1A) and in the cortex and
hippocampus of PS19 mice within the age of 2 mo (Fig. 1B and
SI Appendix, Fig. S1B). Since IL-1β is highly abundant in AD
patients’ brains and body fluids (38), and is associated with
cognitive decline (33), we monitored the mRNA and protein
levels of IL-1β in both the cortex and hippocampus of PS19 mice.
We found that both IL-1β mRNA (Fig. 1C) and protein levels
(Fig. 1D) were significantly increased in PS19 mice that were 2-mo-
old. These data suggest that inflammation in PS19 mice is asso-
ciated with Tau phosphorylation. However, in order to determine
whether IL-1β is directly responsible for Tau phosphorylation, we
overexpressed hTau-P301L in primary neurons before treatment
with IL-1β. We found that IL-1β induced a robust increase in hTau
phosphorylation at S199 (Fig. 1E and SI Appendix, Fig. S1C).

These data suggest that IL-1β is directly responsible for hTau
phosphorylation. Thus, we explored the underlying mechanism of
how IL-1β induces Tau phosphorylation at S199.
Previously, we showed that IL-1β could induce the expression

of CBS, a catalytic enzyme responsible for synthesizing H2S (34).
Thus, we hypothesized that IL-1β induces hTau phosphorylation
by a mechanism that is dependent on H2S. In order to test this
hypothesis, we monitored the intracellular levels of both CBS
and H2S in murine PS19 brains. Consistent with our previous
publication (34), we found that the expression of CBS (Fig. 1 F
and G and SI Appendix, Fig. S1 D and E) and intracellular H2S
(Fig. 1 H and I and SI Appendix, Fig. S1 F and G) was increased
in the cortex and hippocampus of PS19 mice. Furthermore, we
found that the depletion of CBS (CBS RNAi) markedly reduced
Tau phosphorylation at S199 in the cortex after administration of
IL-1β to PS19 mice, as monitored by Western blotting (Fig. 1J
and SI Appendix, Fig. S1H) and confocal analyses (Fig. 1K and
SI Appendix, Fig. S1I). These data indicate that H2S plays an
essential role in facilitating Tau phosphorylation. To further
confirm our cell culture data in mice, we administered IL-1β to
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Fig. 1. IL-1β induces Tau-phosphorylation in an H2S-dependent manner. (A) Western blot analysis using brain extracts isolated from AD patients and age-matched
control brains showed that hTau-S199P level was increased. (B) Immunoprecipitation analysis using HT7 antibody explains that hTau-S199 phosphorylation (hTau-S199P)
was increased in the cortex and hippocampus of PS19mice. (C andD) ThemRNA level of IL-1β measured by quantitative RT-PCR and protein level of IL-1β by ELISAwere
increased in the cortex and hippocampus of PS19 mice. (E) Administration of IL-1β induces hTau-S199 phosphorylation in primary neurons overexpressing hTau-P301L.
(F andG) The immunofluorescent staining shows that the expression level of CBS was increased in the cortex (F) and hippocampus (G) of PS19mice. (H and I) Intracellular
H2S level (WSP1; green fluorescence) was increased in the cortex (H) and hippocampus (I) of PS19mice. (J) The depletion of CBS by administration of CBS RNAi reduces
hTau-S199 phosphorylation in the cortex of PS19mice. (K) Confocal analysis showed that depletion of CBS by CBS RNAi reduces hTau-S199 phosphorylation in the cortex
of PS19mice. (L) The hTau-S199 phosphorylation was reduced in primary neurons isolated from CBS+/−mice compared to CBS+/+ neurons overexpressed with hTau-
P301L and treated with IL-1β (10 ng/mL) for 24 h. (M) The phosphorylation of hTau-S199 was increased in primary neurons overexpressing hTau-P301L after admin-
istration of IL-1β or GYY4137 (200, 300 μM). (N) administration of GYY4137 (300 μM) with or without IL-1β increases hTau-S199P in primary neurons depleted with CBS.
(O and P) Confocal microscopic analysis (O) and quantitative analysis (P) using ImageJ showed that localization of hTau-S199P in dendrites were decreased in dendritic
spines in PS19 mice after depletion of CBS. One-way ANOVA measured statistical significance with a Tukey–Kramer post hoc correction, n = 7, *P < 0.05. All data are
expressed as mean ± SEM. The arrowheads in O indicate the dendritic spines. (Magnification: G–I, 20×; K, 40×; O, 60×.)
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CBS+/+ and CBS+/− mice overexpressing hTau-P301L in the cor-
tex. In the PS19 brain, aberrant activation of nonneuronal cells,
such as microglial cells, mostly contribute to the increase in IL-1β
in the brain (37, 39). However, the production of inflammatory
molecules in a healthy brain is minimal. Thus, to mimic the
pathological conditions that are present in the PS19 brain, we
administered IL-1β to CBS+/+ and CBS+/− mice overexpressing
hTau-P301L in the cortex. This study revealed that Tau phos-
phorylation was significantly decreased in CBS+/− mice compared
to CBS+/+ mice (Fig. 1L and SI Appendix, Fig. S1J), but we
could still detect Tau phosphorylation in the CBS+/− mice. This
may be explained by the fact that the intracellular H2S levels were
significantly decreased in CBS+/− mice, but not fully eliminated.
In order to directly monitor the influence of H2S on hTau

phosphorylation, we administered the H2S donor, GYY4137, to
primary neurons overexpressing hTau-P301L. We found that
GYY4137 induced Tau phosphorylation at S199 in a dose-dependent
manner. Furthermore, the increase in GYY4137-induced hTau
phosphorylation was comparable to the hTau phosphorylation
levels observed when IL-1β was administered to primary neurons
overexpressing hTau-P301L (Fig. 1M and SI Appendix, Fig. S1K).
We also found that administration of GYY4137 induced hTau
phosphorylation in CBS-depleted neurons, and the increase in
hTau phosphorylation was not further elevated after administra-
tion of IL-1β (Fig. 1N and SI Appendix, Fig. S1L). These data
suggest that H2S, generated by CBS, is critical for IL-1β–induced
phosphorylation of hTau at S199.
Since phosphorylation of Tau at S199 leads to its mislocalization

to the spines (6–8), we monitored the localization of phosphory-
lated Tau in the spines of primary neurons isolated from PS19
mice. We found that phosphorylated Tau was highly abundant in
the spines; however, it was reduced in CBS-depleted neurons (Fig.
1 O and P). These data suggest that H2S plays an essential role in

regulating Tau phosphorylation, and the mislocalization of phos-
phorylated Tau to dendrites is induced by inflammatory stimuli.
However, the underlying mechanism of how H2S induces hTau
phosphorylation at S199 remains unanswered.

H2S Down-Regulates GSK3β Phosphorylation without Affecting AKT
Phosphorylation. Previous reports have suggested that the acti-
vation of protein kinase GSK3β is essential for Tau phosphory-
lation at S199 and GSK3β activity is inhibited by phosphorylation
at S9 (17, 18). A decrease in GSK3β phosphorylation due to the
inactivation of another protein kinase, AKT, leads to GSK3β
activation (17, 21). The phosphorylation of T308 and S473 is
necessary for the activation of AKT (40, 41). We monitored the
phosphorylation levels of AKT and GSK3β in AD patients’
brains as well as the cortex and hippocampus of PS19 mice.
Consistent with previous data (42), we found that AKT remained
phosphorylated at S473 and T308 in AD patients’ brains (Fig. 2A
and SI Appendix, Fig. S2A) as well as the cortex and hippo-
campus of PS19 mice (Fig. 2B and SI Appendix, Fig. S2 B and C).
However, the phosphorylation of GSK3β at S9 was decreased in
the AD patients’ brains (Fig. 2A and SI Appendix, Fig. S2A), as
well as the cortex and hippocampus of PS19 mice (Fig. 2B and SI
Appendix, Fig. S2 B and C). To further confirm these results, we
administered IL-1β to primary neurons isolated from CBS+/−

mice overexpressing hTau-P301L. Consistent with our in vivo
results, we found that IL-1β did not affect AKT phosphorylation
but reduced GSK3β phosphorylation at S9 (Fig. 2C and SI Ap-
pendix, Fig. S2D). Furthermore, we observed that depletion of
CBS in the PS19 cortex increased GSK3β phosphorylation at S9
without affecting the AKT phosphorylation status (Fig. 2D and
SI Appendix, Fig. S2E). These data suggest that H2S plays a
significant role in regulating GSK3β phosphorylation, but it does
not affect AKT phosphorylation. Since AKT is the major kinase

AD 
patients

Control 
patients

Akt-S473P
Akt-T308P
GSK3β-S9P

Actin

A
Wt PS19

Wt PS19

Akt-S473P
Akt-T308P
GSK3β-S9P

Actin
Cortex Hippocampus

hTau-P301L
CBS+/+ CBS+/-

Akt-S473P
Akt-T308P
GSK3β-S9P
Akt

CBS
GSK3β

- + - +IL-1β

B C

Contol
RNAi

CBS
RNAi

Akt-S473P
Akt-T308P

GSK3β-S9P

CBS
GSK3β

Akt

D

Wt

PS
19 Wt

Wt PS19
GSK3βIP: Akt
AktInput

IP: Akt GSK3β
Input Akt

- + IL-1β

E

F
HA-Akt

HA-Akt
T308A/
S473A

HA-Akt
T308D/
S473D

- + - IL-1β+ -

HA

IP: HA GSK3β
GSK3β-
S9P

I

GSK3βIP: HA

Input

+

C
BS

-/-
C

BS
+/

+

G

Akt
GSK3β

IP: Akt GSK3β
Input Akt

- + GYY4137

- + GYY4137

GSK3β-S9P

GSK3β

HPS
19

HA

GSK3β-
S9P

Akt
GSK3β

Input

Fig. 2. Phosphorylation of GSK3β is dependent on H2S. (A) Western blot analysis using brain tissue lysates of AD patients showed that AKT phosphorylation
at S473 (AKT-S473P) and T308 (AKT-T308P) remains unaltered, but phosphorylation of GSK3β at S9 (GSK3β S9P) was decreased significantly. (B) Phosphor-
ylation of AKT at S473 (AKT-S473P) and T308 (AKT-T308P) remains unaltered but phosphorylation of GSK3β at S9 (GSK3β S9P) was decreased in the cortex and
hippocampus of PS19 mice analyzed by Western blot. (C) Administration of IL-1β in CBS+/− mice overexpressing hTau-P301L rescued phosphorylation of GSK3β
at S9 (GSK3β S9P) compared to CBS+/+ mice overexpressing hTau-P301L. (D) Western blot analysis showed that depletion of CBS after administration of CBS
RNAi in PS19 mice rescued phosphorylation of GSK3β at S9 (GSK3β S9P) although AKT phosphorylation at S473 (AKT-S473P) and T308 (AKT-T308P) remained
unaltered. (E) The interaction between AKT and GSK3βwas decreased in PS19 mice and analyzed by coimmunopreciptation (co-IP) analysis. (F) Administration
of IL1β (10 ng) causes a decrease in the interaction between AKT and GSK3β in primary neuron culture. (G and H) Administration of GYY4137 (300 μM) causes
a decrease in the interaction between AKT and GSK3β and the phosphorylation of GSK3β at S9 residue. (I) CBS+/+ or CBS−/− neurons overexpressing HA-AKT,
HA-AKT-T308A/S473A, or HA-AKT-T308D/S473D were treated with IL-1β. Administration of IL-1β affects interaction between Akt and GSK3β and phosphorylation
of GSK3β in CBS+/+ neurons compared to CBS−/− neurons.

4420 | www.pnas.org/cgi/doi/10.1073/pnas.1916895117 Sen et al.

D
ow

nl
oa

de
d 

at
 R

 B
 D

R
A

U
G

H
O

N
 L

IB
R

A
R

Y
 o

n 
F

eb
ru

ar
y 

26
, 2

02
0 

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1916895117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1916895117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1916895117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1916895117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1916895117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1916895117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1916895117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1916895117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1916895117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1916895117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1916895117/-/DCSupplemental
https://www.pnas.org/cgi/doi/10.1073/pnas.1916895117


that phosphorylates GSK3β, we investigated the mechanism of
how H2S regulates GSK3β phosphorylation without affecting
AKT phosphorylation.
In order to determine whether the phosphorylation status of

GSK3β is dependent on the AKT–GSK3β complex, we monitored
the interaction between AKT and GSK3β by coimmunoprecipi-
tation assays using cortical lysates from PS19 mice. We found that
the interaction between AKT and GSK3β was reduced in cortical
lysates from PS19 mice compared to wild-type mice (Fig. 2E and
SI Appendix, Fig. S2F). These results were further confirmed in
primary neurons treated with IL-1β, which also had significantly
reduced levels of the AKT–GSK3β complex compared to un-
treated cells (Fig. 2F and SI Appendix, Fig. S2G). In order to study
the effects of GYY4137 on the interaction between AKT and
GSK3β, as well as the phosphorylation of GSK3β, we treated
primary neurons with GYY4137. We found that GYY4137-
treated cells had decreased levels of the AKT–GSK3β complex
(Fig. 2G and SI Appendix, Fig. S2H), along with a reduction in
GSK3β phosphorylation (Fig. 2H and SI Appendix, Fig. S2I)
compared to untreated cells. These data suggest that H2S directly
influences GSK3β phosphorylation by modulating the AKT–
GSK3β interaction.
In order to elucidate whether the AKT–GSK3β interaction is

dependent on AKT phosphorylation, we generated the following
constructs expressing either: 1) Wild-type AKT (HA-AKT), 2) a
mutant of AKT that abolishes the phosphorylation of the amino
acids which are required for AKT activation (phospho-mutant;
HA-AKT-T308A/S473A), or 3) a phospho-mimic AKT mutant
(HA-AKT-T308D/S473D). These constructs were overexpressed
in CBS+/+ and CBS−/− neurons and treated with IL-1β. We found
that the interaction between AKT and GSK3β was decreased in
neurons isolated from CBS+/+ mice following IL-1β administration,
irrespective of the overexpression of either the phospho-mutant or
the phospho-mimic mutant of AKT (Fig. 2I and SI Appendix, Fig.
S2J). However, in CBS-depleted cells, the interaction between
AKT and GSK3β remained unaltered with or without IL-1β treat-
ment. In addition, the interaction between AKT and GSK3β
remained unaltered after the overexpression of either the phospho-
mutant or phospho-mimic mutant of AKT (Fig. 2I and SI Ap-
pendix, Fig. S2J). These data suggest that the interaction between
AKT and GSK3β is not dependent on AKT phosphorylation;
however, intracellular H2S levels, which were abolished in CBS−/−

neurons, can modulate the interaction between AKT and GSK3β.
In order to examine whether the AKT–GSK3β complex has any

influence on GSK3β phosphorylation, we monitored the phos-
phorylation of GSK3β at S9 in IL-1β–treated cells overexpressing
HA-AKT, HA-AKT-T308A/S473A, or HA-AKT-T308D/S473D.
We found lower levels of GSK3β phosphorylation at S9 in cells
where the interaction of HA-AKT or HA-AKT-T308D/S473D
with GSK3β was decreased after IL-1β treatment (Fig. 2I and SI
Appendix, Fig. S2K). Since HA-AKT-T308A/S473A is a dead-
kinase mutant of AKT, we found that it was unable to phos-
phorylate GSK3β irrespective of its interaction with GSK3β with
or without IL-1β treatment (Fig. 2I and SI Appendix, Fig. S2K).
These data suggest that the interaction between AKT and GSK3β
is independent of the phosphorylation status of AKT, but it is
required for AKT to phosphorylate GSK3β. Furthermore, we
found that the phosphorylation of GSK3β at S9 remained un-
altered in cells overexpressed with HA-AKT-T308D/S473D with
or without administration of IL-1β (Fig. 2I and SI Appendix, Fig.
S2K). These data suggest that phosphorylation of GSK3β is de-
pendent on the interaction between AKT and GSK3β and in-
tracellular H2S levels is critical to regulate the AKT–GSK3β
interaction. However, the underlying mechanism of how H2S
regulates the interaction between AKT-GSK3β has not been
elucidated yet.

Sulfhydration of Phosphorylated AKT at C77 Inhibits the Formation of
the AKT–GSK3β Complex and Prevents the Phosphorylation of GSK3β
at S9. H2S is known to function as an intracellular signaling mol-
ecule through the sulfhydration of proteins. Protein sulfhydration
occurs when H2S attaches to a cysteine residue in a protein and
converts the –SH to an –SSH (35, 36). We tested whether AKT,
phosphorylated AKT, or GSK3β can be sulfhydrated in human
AD samples. We detected sulfhydrated wild-type AKT (AKT-
SSH) and sulfhydrated phosphorylated AKT (AKT-P-SSH) at
either S473 (AKT-S473P-SSH) or T308 (AKT-T308P-SSH).
However, GSK3β was not sulfhydrated in AD patients’ brains
(Fig. 3A and SI Appendix, Fig. S3A). This was further confirmed in
another experiment where administration of GYY4137 sulfhy-
drated HA-AKT-T308A/S473A, and HA-AKT-T308D/S473D
to a similar extent as observed in neurons overexpressed with
HA-AKT (Fig. 3B and SI Appendix, Fig. S3B). These data suggest
that both wild-type AKT and the phosphorylated AKT can be
sulfhydrated.
To further confirm these results, we analyzed the presence of

AKT-SSH and AKT-P-SSH in the cortex and hippocampus of
PS19 mice. We found that the levels of AKT-SSH, AKT-S473P-
SSH, and AKT-T308P-SSH were highly abundant in the cortex
and hippocampus of PS19 mice (Fig. 3C and SI Appendix, Fig.
S3C). To determine the role of CBS and H2S in AKT sulfhy-
dration, we depleted CBS and monitored AKT sulfhydration in
PS19 mice. Consistent with our previous results, we found that
AKT-SSH, AKT-S473P-SSH, and AKT-T308P-SSH were de-
creased in CBS-depleted PS19 mice (Fig. 3D and SI Appendix,
Fig. S3D). Consistent with these data, we found that depletion of
CBS by RNAi in IL-1β–treated primary neurons abolished the
formation of AKT-SSH, AKT-S473P-SSH, and AKT-T308P-
SSH (Fig. 3E and SI Appendix, Fig. S3E). However, over-
expression of hTau-P301L did not affect AKT sulfhydration in
IL-1β–treated primary neurons (Fig. 3F and SI Appendix, Fig.
S3F). This result suggests that hTau has no influence on the
formation of AKT-S473P-SSH and AKT-T308P-SSH in a feed-
forward mechanism.
In order to identify the Cys (C) residue responsible for AKT-

SSH, we mutated four Cys residues within AKT and found that
mutation of the C77 residue (Fig. 3G) to alanine (C77A) abol-
ished the formation of AKT-SSH in HEK293 cells treated with
GYY4137 (Fig. 3H and SI Appendix, Fig. S3G). The formation of
AKT-SSH was further confirmed by the red maleimide assay. In
this assay, Alexa Fluor 680 is conjugated to C2 maleimide (red
maleimide), which selectively interacts with sulfhydryl groups of
cysteines (Cs), thus labeling both sulfhydrated as well as unsulf-
hydrated Cs. However, treatment with DTT cleaves disulfide
bonds, and thus the red signal from a sulfhydrated protein will be
detached, but the red signal will be maintained on an unsulfhy-
drated protein. Thus, DTT treatment will result in decreased
fluorescence of sulfhydrated proteins. The levels of protein sulf-
hydration were calculated as the residual red fluorescence inten-
sity after DTT treatment divided by the total AKT level.
We employed the red maleimide assay in cells overexpressing

either HA-AKT or HA-AKT-C77A. In cells overexpressing
HA-AKT, we detected an intense red signal, which represented
proteins with —SH as well as –SSH substituents. The intensity
of this signal was reduced by >95% following DTT treatment,
which indicated that HA-AKT was robustly sulfhydrated. In
contrast, in cells overexpressing HA-AKT-C77A, no reduction
in the red signal intensity was observed after DTT treatment,
establishing that the putative sulfhydration of AKT was abolished
by the C77A mutation (Fig. 3I and SI Appendix, Fig. S3H).
Similarly, overexpression of HA-AKT-C77A in IL-1β–treated

primary neurons blocked the formation of AKT-SSH, AKT-S473P-
SSH, and AKT-T308P-SSH (Fig. 3J and SI Appendix, Fig. S3I), as
detected by the modified biotin switch assay. Interestingly, the
phosphorylation of AKT was not affected by mutating the C77
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residue of AKT (Fig. 3J), which suggested that sulfhydration is
downstream of AKT phosphorylation. Similarly, we found that
HA-AKT-C77A was phosphorylated to a similar extent as wild
type AKT in GYY4137-treated HEK293 cells overexpressed
with HA-AKT or HA-AKT-C77A (Fig. 3K and SI Appendix,
Fig. S3J). However, overexpression of HA-AKT-C77A restores
GSK3β phosphorylation compared to cells overexpressing wild
type HA-AKT after treatment with GYY4137. These data suggest
that sulfhydration does not directly influence AKT phosphoryla-
tion at S473 and T308.
In order to understand whether the sulfhydration of phos-

phorylated AKT has any influence on the interaction between
GSK3β and AKT, we overexpressed HA-AKT or HA-AKT-C77A
in GYY4137-treated HEK293 cells. We found that in HA-AKT-

C77A–overexpressing cells, the interaction between phosphory-
lated AKT and GSK3β was detected along with an increase in the
phosphorylation of GSK3β at S9 after treatment with GYY4137
(Fig. 3L and SI Appendix, Fig. S3K). These data suggest that
sulfhydration of AKT blocks its interaction with GSK3β and
subsequently affects the phosphorylation of GSK3β.
This was further confirmed by an in situ kinase activity assay.

In this assay, both wild-type HA-AKT and the HA-AKT-C77A
mutant were overexpressed in GYY4137-treated HEK293 cells,
and AKT or phosphorylated AKT was immunoprecipitated from
the cells followed by a kinase activity assay using GSK3β as
the substrate. We found that phosphorylated AKT from
HA-AKT–overexpressed untreated cells robustly phosphorylated
GSK3β. However, phosphorylated AKT immunoprecipitated from
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Fig. 3. Sulfhydration of total or phosphorylated AKT regulates phosphorylation of GSK3β at S9 residue. (A) The modified biotin assay detects sulfhydration
of total AKT (AKT-SSH) or phosphorylated AKT at S473 (AKT-S473P-SSH) or T308 (AKT-T308P-SSH) in the brain lysates of AD patients compared to age-
matched control brains. However, GSK3β was not sulfhydrated in the AD patients. (B) Administration of GYY4137 (300 μM) in primary neurons induces
sulfhydration of HA-AKT-T308A/S473A and HA-AKT-T308D/S473D. (C) Sulfhydration of total AKT (AKT-SSH) or phosphorylated AKT at S473 (AKT-S473P-SSH)
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of CBS RNAi in PS19 mice blocks sulfhydration of total AKT (AKT-SSH) or phosphorylated AKT at S473 (AKT-S473P-SSH) or T308 (AKT-T308P-SSH). (E) Depletion
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or AKT-T308P and GSK3β after administration of GYY4137 (300 μM) in HEK293 cells. (M) In vitro kinase assay showed that AKT, AKT-S473P, or AKT-T308P
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S9 (GSK3β-S9-P) was rescued after overexpression of AKT-C77A mutant in HEK293 cells.
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AKT-C77A–overexpressing cells phosphorylated GSK3β irrespective
of GYY4137 treatment (Fig. 3M and SI Appendix, Fig. S3L). These
data confirm that sulfhydration of AKT phosphorylated at either
S473 or T308 is a key posttranslational modification that reduces
the phosphorylation of GSK3β in an H2S-dependent manner.

AKT Sulfhydration Was Abolished and GSK3β Phosphorylation Was
Restored in a Transgenic AKT Knockin Mouse (AKT-KI+/+). In order
to determine whether AKT-C77A has any influence on the kinase
activity of GSK3β in vivo, we generated a knockin mouse con-
taining a mutated C77 residue in AKT that was substituted with
alanine (AKT-C77A) using a modified version of the CRISPR-Cas9
technology (SI Appendix, Fig. S4A). The generation of AKT-KI−/−,
AKT-KI−/+, and AKT-KI+/+ mice was confirmed by geno-
typing (Fig. 4A). There were no gross differences between the
AKT-KI−/− and AKT-KI+/+ mice either from the dorsal, ventral,
or lateral view, as well as brain size (Fig. 4B). The bodyweight of
the AKT-KI+/+ mice increased with their age irrespective of the
gender, and the increase was comparable to the AKT-KI−/− mice
(Fig. 4C). In order to more fully examine the knockin mice, we
analyzed the brain sections of AKT-KI−/− and AKT-KI+/+ mice.
We did not observe any remarkable differences in the cellular
morphology or in the total number of cells in the brain sections of

the cortex and hippocampus of AKT-KI−/− and AKT-KI+/+ mice
(Fig. 4D). In addition, there was no difference in the movement
time and in the percentage of time spent in the center during
the open-field test of AKT-KI−/− and AKT-KI+/+ mice (Fig. 4 E
and F). These data suggest that there is no difference in loco-
motor activity between AKT-KI−/− and AKT-KI+/+ mice at the
physiological level.
In order to determine whether AKT sulfhydration can be

blocked in AKT-KI+/+ mice, we administered IL-1β to these
mice. IL-1β induction does not occur in either AKT-KI+/+ or
AKT-KI−/− mice under physiological conditions. Thus, to mimic
the inflammatory state, we administered IL-1β to the mice. We
found that administration of IL-1β to AKT-KI+/+ mice prevented
the formation of AKT-SSH, AKT-S473P-SSH, and AKT-T308P-
SSH in the cortex and hippocampus. However, AKT was not
sulfhydrated at the physiological level in the absence of IL-1β
treatment (Fig. 4G and SI Appendix, Fig. S4B). Similarly, we
found that in primary neurons isolated from AKT-KI+/+ mice, the
formation of AKT-SSH, AKT-S473P-SSH, and AKT-T308P-SSH
was abolished after administration of either IL-1β or GYY4137
compared to AKT-KI−/− mice. However, the phosphorylation
of AKT at either S473 (AKT-S473P) or T308 (AKT-T308P)
remained unaltered in murine AKT-KI+/+ neurons compared to
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murine AKT-KI−/− neurons (Fig. 4H and SI Appendix, Fig. S4C).
These data suggest that IL-1β induced the formation of AKT-SSH,
AKT-S473P-SSH, and AKT-T308P-SSH by elevating intracellular
H2S levels. However, the formation of AKT-SSH, AKT-S473P-
SSH, and AKT-T308P-SSH can be blocked in AKT-KI+/+ mice.
Our data show that a reduction in AKT-SSH, AKT-S473P-SSH,

or AKT-T308P-SSH rescued the interaction between GSK3β and
AKT, AKT-S473P, or AKT-T308P in AKT-KI+/+ mice compared
to AKT-KI−/− mice after treatment with IL-1β (Fig. 4I and SI
Appendix, Fig. S4D). An increased interaction between phos-
phorylated AKT and GSK3β restored GSK3β phosphorylation at
S9 in AKT-KI+/+ mice compared to AKT-KI−/− mice after ad-
ministration of IL-1β (Fig. 4J and SI Appendix, Fig. S4E). This was
further confirmed by confocal microscopy analysis, where the re-
duction in GSK3β phosphorylation at S9 was restored in AKT-
KI+/+ mice following administration of IL-1β (Fig. 4K and SI
Appendix, Fig. S4F). Taken together, our data show that GSK3β
phosphorylation at S9 was restored in AKT-KI+/+ mice after IL-1β
administration. Thus, it is important to understand whether
blocking the formation of AKT-SSH in the PS19 brain can reduce
Tau phosphorylation.

IL-1β–Treated AKT-KI+/+ Mice Overexpressing hTau-P301L Have Reduced
hTau Phosphorylation Levels That Prevent the Loss of Dendritic Spines
and Improve Memory Functions. We attempted to generate a ho-
mozygous PS19+/+:Akt-KI+/+ mice colony to test the influence of
AKT-SSH on Tau phosphorylation in PS19 mice. Unfortunately,
we found that establishing a homozygous PS19+/+:AKT-KI+/+

mice colony was unfeasible because female PS19+/+:AKT-KI+/+

mice were infertile like the female PS19+/+ mice. However, we
studied heterozygous PS19+/−:AKT-KI+/− mice to elucidate the
role of AKT sulfhydration in Tau phosphorylation. We found
that Tau phosphorylation was reduced in PS19+/−:AKT-KI+/−

mice compared to PS19+/−:AKT-KI−/− mice (SI Appendix, Fig.
S5A) and the PS19+/−:AKT-KI+/− mice showed improvement in
spatial memory functions, which was determined by a Y-maze
study. In this test, the total number of arm entries (SI Appendix,
Fig. S5A), total alternations, and the number of total triad al-
ternations are calculated. The total number of arm entries (SI
Appendix, Fig. S5B) and total alternations (SI Appendix, Fig.
S5C) are almost similar between PS19+/−:AKT-KI−/− mice and
PS19+/−:AKT-KI+/− mice. This indicates that there were no
major differences in motor functions of AKT-KI+/+ and AKT-KI−/−

mice. However, total triad alternations (SI Appendix, Fig. S5D)
in the Y-maze was significantly reduced in PS19+/−:AKT-KI−/−

mice compared to PS19+/−:AKT-KI+/− mice. These data sug-
gest that blocking AKT sulfhydration improved memory functions
in PS19 mice.
These encouraging data prompted us to determine whether

homozygous AKT-KI+/+ mice fully block Tau phosphorylation
and restore cognitive functions. To test this hypothesis, we
overexpressed hTau-P301L in the brains of both AKT-KI−/− and
AKT-KI+/+ mice followed by administration of IL-1β. As GSK3β
activation was compromised in IL-1β–treated AKT-KI+/+ mice,
we tested whether hTau was phosphorylated at S199 in the
cortex and hippocampus of AKT-KI−/− and Akt-KI+/+ mice after
administration of IL-1β. We found that hTau phosphorylation
was increased at S199 in the murine AKT-KI−/− cortex and
hippocampus after administration of IL-1β. However, hTau
phosphorylation at S199 was blocked in AKT-KI+/+ mice after
administration of IL-1β (Fig. 5 A and B and SI Appendix, Fig.
S5E). These results were further confirmed by confocal micro-
scopic analysis, which showed that hTau S199 phosphorylation
was decreased in the hippocampus (Fig. 5C and SI Appendix, Fig.
S5F) and cortex (Fig. 5D and SI Appendix, Fig. S5G) of hTau-
P301L–overexpressing IL-1β–treated AKT-KI+/+ mice compared
to hTau-P301L–overexpressing IL-1β–treated AKT-KI−/− mice.
To further confirm these results, we isolated primary neurons

from AKT-KI+/+ mice overexpressing hTau-P301L, followed by
IL-1β treatment of the neurons. Next, we monitored hTau phos-
phorylation at S199. Consistent with our in vivo results, we found
that the phosphorylation of hTau at S199 was blocked in AKT-KI+/+

neurons compared to AKT-KI−/− neurons in association with
an increase in GSK3β phosphorylation (Fig. 5E and SI Ap-
pendix, Fig. S5H).
Since Tau phosphorylation at synapses significantly reduced

the number of dendritic spines (43), we monitored the percentage
of hTau-S199-P in the spines of neurons isolated from AKT-KI+/+

and AKT-KI−/− mice. We found that the percentage of hTau-
S199-P+ spines was decreased in IL-1β–treated neurons isolated
from AKT-KI+/+ mice (Fig. 5F and SI Appendix, Fig. S5I). The
spine loss was further confirmed by monitoring the expression
level of a postsynaptic protein, PSD95. We found that the reduced
expression level of PSD95 in AKT-KI−/− mice was rescued in
AKT-KI+/+ mice after administration of IL-1β (Fig. 5G and SI
Appendix, Fig. S5J). The morphologic assessment of spines using
DiI staining of AKT-KI+/+ mice revealed a loss of several spines in
the cortex and hippocampus (Fig. 5 H and I) that was rescued in
AKT-KI+/+ mice after administration of IL-1β. Similarly, the de-
crease in spine length in the hippocampus (Fig. 5 H and J) of
AKT-KI−/− mice were restored in AKT-KI+/+ mice.
Accumulation of hTau-S199-P in spines leads to synaptic

dysfunctions, which is the most common underlying mechanism
of memory impairment in AD (44). We subjected both AKT-
KI+/+ and AKT-KI−/− mice overexpressing hTau-P301L to the
Y-maze and Barnes maze tests to monitor spatial learning and
memory functions after administration of IL-1β. In the Barnes
maze test, mice are placed in the middle of a large elevated circle,
which has 19 mock holes and 1 target hole, and the time spent in
the target quadrant is measured. The target quadrant is defined as
the area containing the target hole and two more holes left and
right side of the target hole. This is conducted for 4 training days.
On the fifth day, the escape hole is blocked and the time spent in
the target quadrant are measured. We found that the time spent in
the target quadrant was increased for AKT-KI+/+–overexpressing
hTau-P301L treated with or without IL-1β during the training
period of 4 d (Fig. 5K). However, the time spent in the target
quadrant was not improved in AKT-KI−/−–overexpressing hTau-
P301L mice treated with IL-1β compared to untreated AKT-KI−/−

mice overexpressing hTau-P301L (Fig. 5K). On the day of the
probe test, IL-1β–treated AKT-KI+/+–overexpressing hTau-P301L
(Fig. 5L) mice spent more time in the target quadrant, com-
pared to IL-1β–treated AKT-KI−/− mice overexpressing hTau-
P301L (Fig. 5L). These data suggest that the memory function of
AKT-KI−/− mice overexpressing hTau-P301L was impaired after
administration of IL-1β. However, the memory function was res-
cued in AKT-KI+/+ mice under similar experimental conditions.
Consistent with the Barnes maze test, we found that the total

number of triad alternations in the Y-maze was reduced signif-
icantly in hTau-P301L–overexpressing IL-1β–treated AKT-KI−/−

mice compared to hTau-P301L–overexpressing IL-1β–treated
AKT-KI+/+ mice (Fig. 5O). This result suggests that AKT-KI+/+

mice attenuate cognitive dysfunction. However, the total num-
ber of arm entries (Fig. 5M) and total alternations (Fig. 1N) was
altered between hTau-P301L–overexpressing IL-1β–treated
AKT-KI−/− mice and hTau-P301L–overexpressing IL-1β–treated
AKT-KI+/+ mice. This indicates that there were no major differ-
ences in motor functions of AKT-KI+/+ and AKT-KI−/− mice.
Overall, our data suggest that blocking AKT sulfhydration is es-
sential to improving memory functions of mice overexpressing
hTau-P301L under neuroinflammatory conditions.
In order to test whether the impairment of cognitive functions

is also mediated by neuronal loss other than spine loss, we
monitored neuronal loss as a characteristic feature of atrophy or
neurodegeneration in hTau-P301L–overexpressing AKT-KI+/+

mice and AKT-KI−/− mice. We found that overexpression of
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hTau-P301L did not induce neuronal loss after a month of
overexpression (SI Appendix, Fig. S5K). Our results are consistent
with a previous study, which showed that PS19 mice developed
neuronal loss and brain atrophy by 8 to 9 mo (37) despite cognitive
impairment that was observed within 5 mo (45, 46).

Discussion
In the present study, we provide compelling evidence that AKT-
P-SSH is critical for the activation of the protein kinase, GSK3β,
which in turn, augments the phosphorylation of hTau. Our study
also reveals that the interaction between phosphorylated AKT and
GSK3β suppresses the activation of GSK3β. Sulfhydration of
phosphorylated AKT prevents the formation of the AKT–GSK3β
complex and the unbound unphosphorylated GSK3β becomes free
to phosphorylate Tau at S199 (SI Appendix, Fig. S5L). All of these
events can be reversed in transgenic mice that block AKT
sulfhydration.

The functional relevance of AKT in AD remains multifactorial
(47, 48). Importantly, AKT plays a vital role in influencing the
hyperphosphorylation of the microtubule-associated protein,
Tau (49, 50), through GSK3β phosphorylation. Inactivation of
AKT has been shown to augment hTau hyperphosphorylation
(50). However, the underlying mechanism for inactivation of AKT
remains unknown. Previously, it was shown that in AD patient
samples, phosphatase and tensin homolog deleted on chromo-
some 10 (PTEN) down-regulates the activation of AKT by de-
creasing its phosphorylation via inhibiting its localization to the
plasma membrane (51–54). However, we show that sulfhydration
of phosphorylated AKT (AKT-S473P-SSH or AKT-T308P-SSH)
is the primary contributor to GSK3β activation and it is possible
that it functions independent of the PTEN-mediated reduction in
AKT phosphorylation. In addition, the detection of AKT-P-SSH
in AD patient samples and transgenic AD mice models, along
with its correlation with hTau phosphorylation at S199, further
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overexpressing hTau-P301L, after administration of IL-1β (10 ng) in the cortex. (C and D) The confocal analysis shows that the hTau-S199 phosphorylation was
decreased in the hippocampus (C) and cortex (D) of AKT-KI+/+ compared to AKT-KI−/− mice overexpressing hTau-P301L after administration of IL-1β. (E) Compared
to AKT-KI−/− neurons, the induction of hTau-S199 phosphorylation was restored in AKT-KI+/+ neurons overexpressed with hTau-P301L, after administration of
IL-1β (10 ng). (F) Confocal microscopic studies show that the level of hTau-S199 phosphorylation in spines was reduced in AKT-KI+/+ neurons overexpressed with
hTau-P301L after administration of IL-1β (10 ng). (G) Western blot analysis shows that PSD95 was decreased in AKT-KI−/− mice but rescued in AKT-KI+/+ mice
overexpressing hTau-P301L after administration of IL-1β. (H) Confocal microscopic analysis shows that the loss of synaptic puncta as shown by DiI staining in the
cortex and hippocampus was rescued in AKT-KI+/+ mice overexpressing hTau-P301L after administration of IL-1β. (I and J) The loss in the number of spines per
10 μmof dendrites (I) and loss in spine length (μm) of dendrites (J), were rescued in the cortex and hippocampus of AKT-KI+/+ mice compared to AKT-KI−/− mice
after administration of IL1β. (K and L) the time spent in the target quadrant was improved IL-1β–treated AKT-KI+/+ mice overexpressing hTau-P301L
compared to AKT-KI−/− mice overexpressing hTau-P301L during 4 d of training (K ) and the day of probe trial (L) in the Barnes maze test. A representative
image of The Barnes maze was presented where the target hole was colored as blue while the other holes are shown in black color. (M–O) The total
number of entries (M ), total alternations (N ), and the total number of triad alternations (O) were determined in the Y-maze test. The total number of
entries, alternations were unaltered among AKT-KI+/+ mice or AKT-KI−/− mice overexpressing hTau-P301L treated with or without IL-1β. However, the
total number of triad alternations was rescued in IL-1β–treated AKT-KI+/+ mice overexpressing hTau-P301L compared to IL-1β–treated AKT-KI−/− mice
overexpressing hTau-P301L. One-way ANOVA measured statistical significance with a Tukey–Kramer post hoc correction, n = 10, *P < 0.05. All data are
expressed as mean ± SEM. The arrowheads in F indicate the dendritic spines. (Magnification: C, 20×; D, 40; F and H, 60×.)

Sen et al. PNAS | February 25, 2020 | vol. 117 | no. 8 | 4425

N
EU

RO
SC

IE
N
CE

D
ow

nl
oa

de
d 

at
 R

 B
 D

R
A

U
G

H
O

N
 L

IB
R

A
R

Y
 o

n 
F

eb
ru

ar
y 

26
, 2

02
0 

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1916895117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1916895117/-/DCSupplemental


strengthens the evidence that AKT-S473P-SSH or AKT-T308P-
SSH is critical in AD pathology.
Previously, dysregulation of H2S homeostasis was implicated

in the pathological processes of AD. Studies show that H2S
prevents neuronal impairment in an experimental model of AD
(55). However, no studies have provided genetic evidence in-
dicating whether a lack of H2S exaggerated the neuropathology
of AD. In addition, these studies were unable to provide direct
evidence whether intracellular H2S was down-regulated in AD.
Our study contributes to these critical gaps in the field and es-
tablish that augmentation of H2S plays an important role in the
synaptic dysfunction in AD. In support of this conclusion, we
provide compelling evidence using heterogeneous transgenic CBS
mice and transgenic AKT-KI+/+ mice. As part of the mechanism,
we found that AKT sulfhydration is critical for AD pathology,
including Tau phosphorylation, which can be reversed in trans-
genic mice (AKT-KI+/+ mice) that block AKT sulfhydration.
Sulfhydration of proteins is prevalent, and several proteins have
been identified that are sulfhydrated either under physiological or
pathological conditions (34, 35, 56). Importantly, we found that
AKT was not sulfhydrated under physiological conditions. How-
ever, AKT can be sulfhydrated under inflammatory conditions,
which are present in all of the neurodegenerative disorders, in-
cluding AD, Parkinson’s disease, traumatic brain injury, and mul-
tiple sclerosis (57, 58). The investigation of the functional relevance
of sulfhydrated AKT in AKT-KI+/+ mice provides a unique op-
portunity to revisit the influence of AKT-P-SSH in the manifes-
tation of these neurological disorders.
A substantial number of studies have shown that AKT is the

major kinase that regulates the activation of GSK3β. Other than
AKT, the activation of other kinases, such as PKC or PKA, also
contributes to the phosphorylation of GSK3β at S9 (59, 60).
Since GSK3β phosphorylation is down-regulated in the AD
brain, PKA or PKC may also play a role in the down-regulation
of GSK3β phosphorylation. GSK3β phosphorylation is dependent
on the intracellular H2S levels, and the interaction between
phosphorylated AKT and GSK3β was robustly increased in the
PS19 brain after depletion of H2S. Thus, we mainly focused on the
influence of AKT on GSK3β phosphorylation. We provide direct
evidence that blocking AKT sulfhydration in AKT-KI+/+ mice
rescued GSK3β phosphorylation. These data further confirm that
AKT is the major kinase that regulates GSK3β phosphorylation.
Previously, it was shown that Tau phosphorylation was in-

dependent of amyloid-β (Aβ) accumulation in the AD brain
(61–63). However, the underlying mechanism was not fully eluci-
dated. We provide evidence that proinflammatory cytokines can
induce Tau phosphorylation before induction of Aβ in the AD
brain (64, 65). On the other hand, Aβ and IL-1β always function in
a positive feedback loop. Thus, it is possible that induction of Aβ
will further increase the sulfhydration of phosphorylated AKT and
Tau phosphorylation through activation of GSK3β in an IL-1β–
dependent manner.
Although the aggregation of hTau at the late phase of tau-

opathy has been associated with neuronal loss and brain atrophy
(9–11), the early hyperphosphorylation of hTau, specifically at

S199, has a unique importance in synaptic dysfunction in AD
patients. Aberrant hTau phosphorylation at the early stage of
AD induces its mislocalization to dendritic spines and affects its
stability (6–8). In addition, early phosphorylation of hTau serves
as a precursor for hTau aggregation, which is a standard feature
of tauopathy (62, 66). Thus, targeting early phosphorylation of
hTau could be an effective strategy to reduce tauopathy. Our
study provides direct evidence that sulfhydration of phosphory-
lated AKT is responsible for hTau hyperphosphorylation. In
addition, we show that the loss of dendritic spines was rescued in
AKT-KI+/+ mice, which resulted in an improvement in cognitive
function. Thus, targeting sulfhydration of phosphorylated AKT
provides a novel opportunity to address tauopathy in AD. In the
future, we will study whether blocking AKT sulfhydration reduces
brain atrophy and neuronal loss. Furthermore, tauopathy has been
implicated in other neurological disorders other than AD (67).
Thus, the identification of AKT sulfhydration may provide insights
into other tauopathy-associated neurological disorders.

Materials and Methods
Animals. All mouse experiments were approved by the Institutional Animal
Care and Use Committee of the University of Pittsburgh. The Akt-KI+/+mouse
colony was generated using the using the transgenic core facility of the Uni-
versity of Pittsburgh. The PS19 mouse line was purchased from the Jackson
Laboratory. We used homozygous PS19+/+ males to carry out breeding with
Akt-KI+/+ female mice to generate PS19+/−:Akt-KI+/− mice. The details of gen-
eration of AKT-KI+/+, the maintenance and breeding of PS19 mice and
PS19+/−:Akt-KI+/− mice are detailed in S1 Appendix. Details of materials
and methods, including in vivo overexpression of mutant Tau construct
and administration of IL-1β in the brain, cortical neuron culture, site-
specific mutagenesis, transfection in HEK293 cells and primary neurons,
immunocytochemical and immunohistochemical staining, maleimide assay,
coimmunoprecipitation, modified biotin switch assay for sulfhydration,
quantitative real-time PCR, ELISA detection of hydrogen sulfide, agarose gel
electrophoresis for the separation of DNA Western blotting, and neuro-
behavioral tests like Y-maze test, Barnes maze test, open-field test, DiI stain,
and spine evaluation are described in SI Appendix. The quantification of each
image present in the main figures is also incorporated in SI Appendix.

Statistical Analysis. The biochemical studies, Western blot, coimmunopreci-
pitation, ELISA, RT-PCR, confocal analysis, the Sholl analysis, and all behav-
ioral tests were statistically analyzed using one-way ANOVA and multiple
comparisons were performed using the Tukey–Kramer post hoc test (P <
0.05) unless noted otherwise. Mean values were calculated for each bio-
chemical experiment (n = 7) and each behavioral experiment (n = 10), and all
of the data were depicted as the mean ± SEM.

Data Availability. All data are available in the manuscript and SI Appendix.
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