CytoFLEX SRT Experimental setup form - Initial setup

Updated: 06-20-2023

Auburn University Flow Cytometry and High-Speed Cell Sorting Laboratory

Location: 250A Greene Hall, Auburn, AL 36849

Contact: rzw0041@auburn.edu (Rie Watanabe, Operator & Manager) birdric@auburn.edu (Dr. Bird, Director)

Lab phone#: 334-844-2711

Operation hours: 800am-445pm (M-F)

Please read through this document and contact us with any questions before you submit sorting request

Scheduling:

- Sorting can be started between the hours of 900am 330pm. If sorting outside of the regular hours is required, the request must be discussed and approved before the submission.
- A minimum of 30 minutes before or between sorts is required to clean the machine
- A minimum of 1 hour is required before or between sorts is required if aseptic cleaning is requested
- For scheduling, email rzw0041@auburn.edu. Sorting must be scheduled a minimum of 1 working day before the requested appointment time to ensure the scheduling

Sample requirement and preparation tips:

- Minimum volume is 0.5ml even if this volume does not give the ideal cell concentration
- Desired concentration of cells is 1~10 x10⁶ cells/mL (after filtration)
- Samples are supposed to be single cell suspension only (NO CLUMPS). Should be filtered through cell strainer to make good single cell suspension (increases sort efficiency!) and prevent clogging
- Recommended sorting buffers are 1xPBS (free of Ca²⁺/Mg²⁺), Hank's. Buffers can be supplemented with BSA (0.1-1%) or dialyzed FBS (1-5%). Addition of EDTA (up to 5mM) or DNasel (25-50ugml, along with MgCl₂) may help preventing cells clumping via DNA released from dead cells
- Always prepare the unstained control. Cell numbers don't have to be as high as your sorting samples but it is essential to set the gates
- If your samples are stained with more than 1 fluorochrome, prepare samples stained with each fluorochrome individually. This is for compensation purposes

Sample and Collection containers:

- Prepare samples in polyprolylene 5ml (12x75mm) round bottom tubes suit our instrument best
- Sorted cells can be collected in 15ml conical tube, 5ml (12x75mm) tube, or 96-well plate
- Prepare your collection containers pre-loaded with receiving solutions (media etc)

Expectations for cell sorting:

- Sorting time depends on your objective and sample quality. If you need more information, see Appendix or contact us
- Expect the final yield is about 75% of the starting number of desired cells. For example, 1x10⁷ cells with 30% GFP(+) would yield 2.25 x10⁶ GFP(+) cells (10⁷*0.3*0.75). Rare event sort (1% or less) can produce a lower yield, as low as 50%. It will be diluted as well since sorted cells takes up sheath

Submitter information

Date:	Start/Finish:	
Researcher:	Contact	Email:
Lab/PI:	information	Phone:
Department/College/Institution:		
Billing contact:	Charact and discount and t	
If outside of the Auburn University,	Street address and C	.ity:
Sample information (check all applied	d)	
<i>Cell type</i> : \square Cell line \square Primary cells \square	☐ Other	
Species: \square Human \square Non-human prin	nate \square Mouse \square Rat	□Other
Tissue Origin: □Bone Marrow □Peri	pheral Blood \square Neur	ral 🗆 Other
Adhesiveness: \square Non-adherent \square Adh	nerent	
Mode of Disaggregation: \Box Trituratio	n □Trypsin □Collag	enase Other
Size of cell strainers used: \Box 70um \Box	50 um □30um □Ot	her
Estimated cell size: \square <10um \square 10-20	um □20-70um □70	um<
Number of starting cells:		
Volume of cell suspension at start (ml,):	
Solutions cells suspended: \square PBS \square Hi	EPES □Hanks □BSA	%
Do samples potentially contain infecti →If yes, what infectious agents?		
Do samples contain recombinant or sy → If yes, how was your nucleic acid in → If yes, do those genes encode any r	troduced to your sam	
What is the appropriate Biosafety leve	ા of the samples? (Se	ee appendix A) □BL1 □BL2 □BL2-enhanced
BUA accession number by IBC, Auburn	University or your in	stitution
Flow lab use only		
BUA confirmed		
Sorting BUA level		
AU flow lab sorting experiment #		
Comment	1	

Li	Light scatter: ☐FSC ☐SSC					
ВІ	ue laser (48	8nm): □B525-FITC □B690-PC5.5	5			
Ye	llow laser (561nm): □Y585-PE □Y610-mCho	erry □Y675-PC7 □Y	′710-PC5.5 □Y	780	
Re	ed laser (63	Bnm): □R660-APC □R712-PCA70	00 □R780			
Vi	olet laser (4	05nm): □V450-PB □V525-KrO [□V610 □V660 □V7	7 80		
Sorting S	chema (plea	se show fluorescent patterns, ga	ting parameters, and	d hierarchy of ta	arget cells and subsets)	
Sample i	nformation	(for reservoir position and sortin	g mode, see Append	dix B and C)		
		-			Target population	
Tube ID Example	Sample	Position*, reservoir □Plate ☑L2: ☑15ml □5ml □L1: □5ml □R1: □5ml	Sorting mode** Single cell P P1-2 Enr P P1-2 Enr	Initial vol uL2mLmLmL1mL	Target population Middle of GFP(+) Top 5% of GFP(+)	
Tube ID	Sample	Position*, reservoir □Plate ☑L2: ☑15ml □5ml □L1: □5ml	Sorting mode** □Single cell □P □P1-2 □Enr □P □P1-2 □Enr	Initial vol	Middle of GFP(+)	

If needed, add rows

Checklist on your sorting day

Sorting channel information (select all applied)

- Cells suspended in sorting solution, prepared in round bottom 12x75mm tube, 5ml (Ex. Falcon 352058)
- Receiving tubes pre-filled with necessary amount of media or transporting solution (15ml or 5ml tube)
- Transporting container (Need to meet the requirement of your BUA)

Appendix

A. Examples of Biosafety level of samples

	BL1 exempt	BL1	BL2
	murine or other non-human,	Most, excluding human,	human, non-human
Origin of cells	non-primate species	non-human primates	primates, others
Infectious agent	NO	No	Yes (BL2)
Recombinant nucleic acid	NO	Yes (tfxn, TG)	Yes
Viral vector	NO	No	Yes
BUA number	not required	required	required
PPE	Recommended	recommended	required

B. Differences in reservoir position (5-71)

Position	Reservoir	Benefit, suitable for
	accommodated	
Plate	Multi-well plates	Single-cell cloning
L2 (outer left)	15ml, 5ml	Provides maximum purity. Recommended for precious/rare events to
		be sorted in.
L1 (inner left)	5ml	Macro-particles (>=15um) are recommended to go here
R1 (inner right)	5ml	Macro-particles (>=15um) are recommended to go here
R2 (outer right)	15ml, 5ml	Provides maximum purity. Recommended for precious/rare events to
		be sorted in.

C. Differences in sorting mode (2-47)

Mode	Definition and major applications		
	Definition	Having only one event per drop is the most important aspect of the sort.	
Single cell	Application	single cell cloning (plate/slide sorting)	
	Definition	The purity of the sort is the most important. Can gate the % of cells wanted.	
P: Purity	Application	Harvesting top XX% positive cells	
P1-2:	Definition	Same with "Purity" but more inclusive than Purity mode.	
Purity 1-2	Application	Get sorting done a little faster (sacrificing purity slightly).	
	Definition	Recovery is the most important aspect of the sort.	
Enr:Enrich	Application	Collecting all positive events even it contains negative events in or near the drop.	