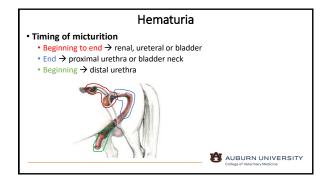

Hematuria and Pigmenturia

- Hematuria: Blood in the urine
- Pigmenturia: Presence of a component that gives an abnormal color to urine
- Color of urine \rightarrow associated with excretion of urochrome
 - Product of the degradation of hemoglobin

Hematuria


- Macroscopic or microscopic
- Severe cases \rightarrow voiding of blood clots

History

- Drugs administered
- Type of pastureGeographical location
- Recent exercise, abnormal gait

Exercise-induced hematuria

- First void after exercise
- a) <u>Cystoliths</u>
- b) Bladder trauma against pelvic rim (Concussion)
- c) Osteochondroma of the os pubis

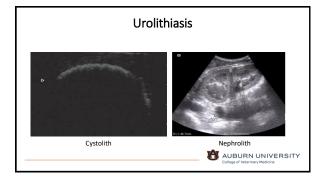
Hematuria caused by osteochondroma of the os pubis. EVE 24:30-37, 2012

Urolithiasis

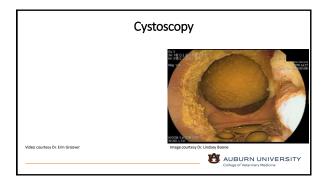
- More often in males
- Hematuria after exercise
- Near the <u>end of urination</u>
- Pollakiuria
- Dysuria
- Dribbling urine
- Prolonged periods of penile protrusion

Urolithiasis

- Nephroliths and ureteroliths
- Partial or complete obstruction
 If bilateral → chronic renal failure
- Mild recurrent colic


Urolithiasis

Diagnosis


- Rectal palpation
- Ultrasound
- Cystoscopy
- Type 1- yellow to green, spiculated, friable (mainly CaCO₃)
 90% cases
- Type 2- Smooth, hard and white (CaCO₃+phosphate+Mg)

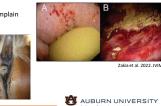
4

Urolithiasis - treatment

- Surgical/manual removal
- · Laser and shock wave
- Recurrence
 - 46.6% Fragments acting as a nidus remained
 Undetected calculi

 - Propensity toward stone formation (Ca crystal aggregation)

Urolithiasis - treatment


· No studies to prove that urine acidification prevents formation Below pH 6.5 calcium carbonate uroliths do not form Prevented new calculi formation in a single case of a horse with recurrent cystic calculi

ment was achieved by feeding a 0.2% calcium oat hay ration and administering 175 mg ammonium sulfate per kg body weightorally twice daily for 7 months which produced a urine pH of 5.0. There was no evidence of metabolic acid/base metade at 189

Sabulous cystitis

- Secondary to ventral accumulation of urine sediment
- Associated with bladder dysfunction
- Urinary incontinence
- Most common presenting complain Treatment

 - Bladder lavage
 Antimicrobials
 - Anti-inflammatories
 - Bethanechol
 - Phenazopyridine

Urinary tract infection and pyelonephritis

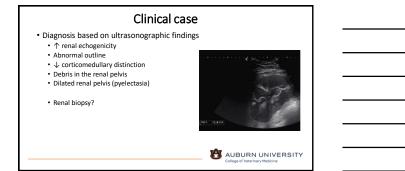
- Primary (rare)
- Secondary
 - Paresis or paralysis of the bladder Urocystoliths

- ↑ WBCs
- Intracellular bacteria
- Quantitative urine culture (>10,000 CFU/mL)

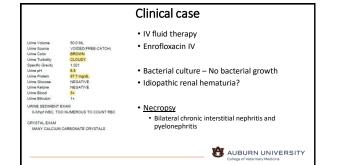
AUBURN UNIVERSITY

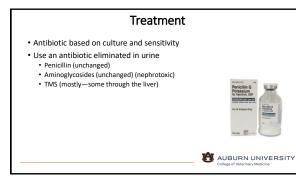
Urinary tract infection and pyelonephritis

- Lower urinary tract \rightarrow Bladder, urethra
 - Multiparous mares
 - Chronic atonic bladders
- Upper urinary tract → kidneys, ureters
 - Pyelonephritis ightarrow renal pelvis and parenchyma · Associated with nephroliths or ureteroliths
 - Microscopic or macroscopic hematuria
 - · Unilateral or bilateral renal hemorrhage


Clinical case

- 12 YO AQH gelding
- Acute hematuria of 3-day duration
- Lethargic 2 weeks prior
- HR 48 bpm, RR 16 brpm, T 100.2FHematuria (frank blood) in the mid-late stream





-

Collection of samples for urinalysis, bacterial culture, leptospirosis

Neoplasia

- Clinical signs similar to those of horses with cystic calculi
- Rectal palpation
 - Mass in bladder
- Enlarged kidney
- Ultrasound
- Cystoscopy
- Urinalysis and cytology
- Nephrectomy ightarrow search for metastasis first

Wise et al. 2009. JVIM

AUBURN UNIVERSITY

Verminous nephritis

- Halocephalobus gingivalis
- 1. Brain (mimics EPM)
 2. Spinal cord
- 3. kidney
- Renal granulomas
- Diagnosis
- Renal ultrasound
- Nematode in urine sediment
- Treatment
- Larvicidal antihelmintic
- No successful medical treatment reported
 Nephrectomy

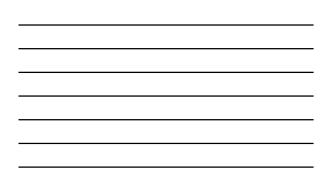
Clinical case

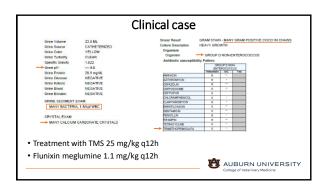
• 13 YO AQH gelding

 Intermittent hematuria of 1 month duration, fever • Evaluated few weeks prior \rightarrow unknown origin of hematuria

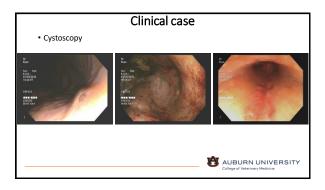
Physical exam

- HR 74 bpm, RR 20 brpm, T 104.4F
- CRT 3.5 s
- Yellow/cloudy urine with blood at end of urination Sabulous material on hind limbs




AUBURN UNIVERSITY

Clinical case


- Abdominal ultrasound \rightarrow Normal kidneys, slightly hypomotile SI
- Rectal \rightarrow enlarged bladder, normal left kidney
- Abdominocentesis ightarrow pale yellow, clear
- Normal coagulation profile Urinalysis by catheterization
- CBC and chem

RBC	7.62 x 10*6k				
	13.8 old.	L 6.00 - 12.00 10.0 - 18.0	TOTAL PROTEIN	6.53 g/dL	6.00 - 8.60
HGB	13.8 gat. 37.0 %	32.0 - 48.0	ALBUMIN	2.95 g/dL	2.70 - 4.10
MCV	48.5 8	32.0 - 48.0	GLOBULIN	3.58 g/dL	2.80 - 4.40
MCV	48.5 fL 18.1 pg	34.0 - 58.0	ALBUMIN/GLOBULIN RATIO	0.82	0.70 - 1.00
MCHC	37.4 H gidt	310-370	SDH	7.3 UIL	0.5 - 10.0
RDW	37.4 M gdt. 18.0 %	17.0 - 37.0	AST	328 141	144 - 350
PLATELET COUNT	18.0 % 108 x 10*34		GGT	17 UL	2.29
PLATELET COUNT MPV	106 x 10°3A 6.4 ft	L 100 - 230 5.8 - 11.5	TOTAL BILIRUBIN	4.46 H mg/dL	0.70 - 3.60
WBC	14.38 H x 10'3A		CK2	340 UL	103 - 402
Test	Diff % Result Units	Ref. Interval	BLIN	12.6 mg/dL	90.240
			CREATININE	1.1 mg/dL	0.0-2.0
SEG	(79%) 11.360 H x 10*3A		CALCIUM	10.3 L mg/dL	10.5 - 12.9
BANDS	(3%) 0.431 H x 10*34		PHOSPHORUS	1.8 L moldL	21-46
LYMPH	(16%) 2.301 x 10*34		MAGNESIUM	1.2 L moldL	1.7 - 2.1
MONO	(2%) 0.288 /ull.	0.000 - 0.600	GLUCOSE	120 mg/dl,	81 - 127
EOS	(0%) 0.000 x 10*34		BICARBONATE	22.9 mmoil.	21.0 - 30.0
BASO	(0%) 0.000 x 10*3A		SODIUM	139 mmoil.	134 - 150
OTHER	(0%) 0.000 x 10*3A		POTASSIUM	3.0 L mmolt	3.5 - 4.5
PLT.EST	WITHIN REFERENCE INTERVA		CHLORIDE	104 mmoil.	97 - 111
PLTEST Plasma I/S		L	ANION GAP	15.1	9.0 - 25.0
Fibringen T/S	7.2 g/dL 300 moidl	100 - 400	OSMOL(CALC)	275 mOsm/kg	276 - 288
-	300 mgidi	100 - 400	S.IRON	31 L ug/dL	129 - 173
RBC MORPHOLOGY			UIBC	320 ugidi.	123 - 430
SLIGHT ROULEAUX			TIBC	351 upidL	243 - 553

Urethral rents

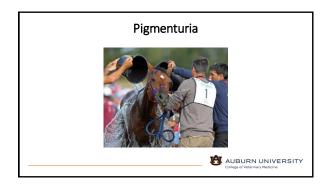
- Linear defect of the urethral mucosa
- Convex surface of the urethra at the level of the ischial arch
- Communicate with the corpus spongiosum penis (CSP)
- Bulbospongiosus muscle contracts to expel urine from the urethra at the end of urination
- Increase in pressure within the CSP

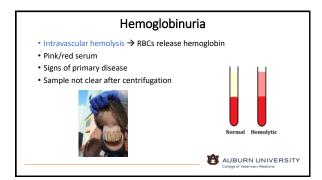
Urethral rents

- Terminal hematuria in geldings
- Hemospermia in stallions
- Baseline pressure within the CSP was not significantly different between geldings and stallions
- Peak urination pressure within the CSP of geldings was significantly increased when compared to stallions (25 vs 14.5 mmHg)

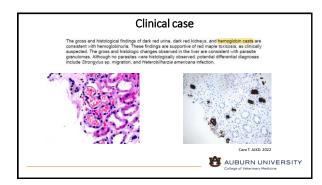
Urethral rents

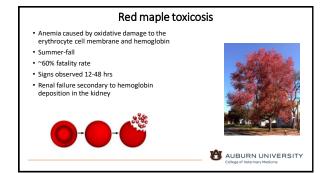
Diagnosis


- Timing of hematuria
- Urinalysis might be normal if caught at the beginning
- +/- mild anemia

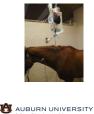

<u>Treatment</u>

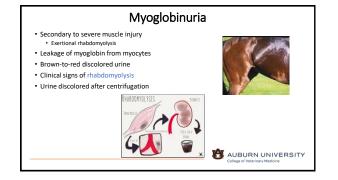
- Often self resolves
- Perineal urethrotomy or corpus spongiotomy





RBC		3.42	x 10*6ML	6.00 - 12.00	TOTAL PROTEIN	7,55	gid.	6.00 - 8.6
HOB		9.4	old	10.0 - 18.0	ALBUMIN	2.32		2.70 - 4.1
HCT		15.3	5	32.0 - 48.0	GLOBULIN	5.23 H	9 ¹ di.	2.80 - 4.4
MCV		44.8	8	34.0 - 58.0	ALBUMIN/GLOBULIN	0.44 L		0.70 - 1.0
MCH		27.4 1	00	14.0 - 19.0	AST	405 H	110	144 - 350
MCHC		61.1		31.0 - 37.0	GGT	3	UA	2.29
RDW		20.0	5	17.0 - 20.0	TOTAL BLIEURIN	7.97 H		0.70 - 3.6
PLATELET COUNT		834 6	x 10*3bd	100 - 230	CK2	851 H	145	103 - 402
MPV		21.0		58-115	BUN		mold.	9.0-24.0
WBC		6.68	x 10*3hd	6.00 - 12.00	CREATININE	79 H	mald.	0.0-2.0
Test	DITS		Linits	Ref. Interval	CALCIUM	10.4 L	mg\dL	10.5 - 12.1
					PHOSPHORUS	4.1		2.1-4.6
SEG	(77%)		x 10*3/uL	3.000 - 6.000	MAGNESIUM	1.6 L	mg/dl,	1.7-2.1
BANDS	(0%)	0.000	x 10*3/uL	0.000 - 0.100	GLUCOSE	115	mg\dL	01 - 127
LYMPH	(21%)		x 10*3/uL	1.500 - 5.000	BICARBONATE	22.7	Tionm	21.0 - 30.1
MONO	(2%)	0.134	Aut	0.000 - 0.000	SODIUM	130 L	mmoil.	134 - 150
EOS	(0%)	0.000	x 10*3/uL	0.000 - 0.600	POTASSIUM	3.6	fionm.	3.5 - 4.5
BASO	(0%)	0.000	x 10*3/uL	0.000 - 0.100	CHLORIDE		Jionm	97 - 111
OTHER	(0%)	0.000	x 10*3/ut.	0.000 - 0.000	ANION GAP	17.9		9.0 - 25.0
NRBC		0	/100 WBC	No Ref Interval	OSMOL(CALC)			276 - 288
PLT.EST	ABOVE REF	ERENCE	INTERVAL		SJRON		ugidt.	129 - 173
Plasma T/S	9.5 g/dL				UIBC	797	ugidi,	123 - 430
Fibrinogen T/S		200	mg/dl	100 - 400	TIBC	1496	ugidt.	243 - 553
					LIPEMIA_INDEX	272 H		0 - 14
d anemia. Ghost ce	lls indicate intra	vascular	hemolysis.	Eccentrocytes are caused by	oxidative			
		anad MC	MC (hupord)	romasia) is likely due to				




Red maple toxicosis

Management

- Prevent toxic absorption \rightarrow activated charcoal 1-3 g/kg BW
- Nasal oxygenBlood transfusion
- Blood tra
- IV fluids
- Judicious use of NSAIDsAvoid corticosteroids and DMSO

Hemoglobinuria Common <u>causes</u> of intravascular hemolysis • Parasitic – piroplasmosis • Viral – EIA • Bacterial – C. perfringens type A • Immune mediated • Immune mediated • Utertel. 2013.AM

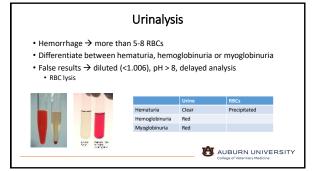
Myoglobinuria

• CK > 2,000 IU

- Serum will be clear
- Myoglobin has no carrier protein → rapidly cleared
 Hemoglobin is bound to haptoglobin → not rapidly cleared

Myoglobinuria

- Seasonal pasture/Atypical myopathy
- Non-exertional rhabdomyolisis
- Ingestion of hypoglycin A → disruption of mitochondrial fatty acid metabolism in myocyte
- HGA in seeds of Acer tree
- Onset 12-24 hrs after ingestion
- \bullet > fall


Drugs

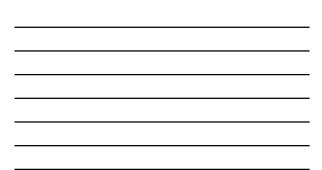
- Doxycycline → dark brown or black-colored urine
- Rifampin ightarrow red- or orange-colored urine
- Phenazopyridine \rightarrow red- or orange-colored urine

Plant pigments

- Red clovers \rightarrow porphyrins \rightarrow red urine
- Alsike clover ightarrow brown urine

Differentiating hemo- and myoglobinuria

- Ammonium sulfate precipitation
 - Hemoglobin precipitates at 80% saturation
 Myoglobin precipitates at full saturation
- Electrophoresis
- Spectroscopy
- spectroscopy
- Biochemical results
- Hemoglobinuria → intravascular hemolysis → Pink serum
 Discoloration with negative strip → plant or drug pigmenturia


Summary

- Thorough clinical examination
 Systemic disease
 - Need for blood transfusion
- Differentiate hematuria, hemoglobinuria and myoglobinuria
- History, bloodwork, serum color, urine color, ultrasound, etc
- Direct treatment and prognosis

