NOT ANOTHER CALF TALK...... KEEPING THEM ALIVE AFTER DAY 1

Jenna Stockler, DVM, DACVIM jew0027@auburn.edu

1

COLOSTRUM - BEEF & DAIRY

- · #I entity to ensure that they have the best chance of survival
- Consume sufficient mass of IgG Successfully absorb sufficient IgG \Rightarrow achieve adequate passive transfer
- 3 Q's of Colostrum
- 3 Q s of Colostrum

 Quality* approximates IgG always want it > 50 g/L & maybe even approaching 100 g/L

 Quantity* 10-20% of BW (15% BW),AEA,"what we always did"

 Quick within 6 hours

2

PLASMA & BLOOD TRANSFUSIONS

- Provides → clotting factors, albumin, Ig
- 20-40ml/kg administered over 20-30 minutes
- Supplement colostrum & reduce risk of disease
- Likely ineffective at providing complete protection against disease
- $^{\circ}$ Utilize ightarrow cases of PLN & other inflammatory diseases

Intravenous immunoglobulin transfusion in colostrum-deprived dairy calves
A Boccarlo ^{6,4} A, Belloli ^{6,5} S, Biffani ¹, V, Locatelli ^{6,5} P, Dall Aza ⁶, J, Filipe ⁶, I, Restelli ^{6,5} D Provetilino ¹, D. Fravetilino ¹, P. Dall Aza ⁶, J. Filipe ⁶, I, Restelli ^{6,5} D Provetilino ¹, D. Travetilino ¹, P. Dall Aza ⁶, J. Filipe ⁶, I, Restelli ^{6,5} D. Provetilino ¹, D. Travetilino ¹, P. Dall Aza ⁶, J. Filipe ⁶, I, Restelli ^{6,5} D. Travetilino ¹, P. Dall Aza ⁶, J. Filipe ⁶, I, Restelli ^{6,5} D. Travetilino ¹, P. Dall Aza ⁶, J. Filipe ⁶, I, Restelli ^{6,5} D. Travetilino ¹, P. Dall Aza ⁶, J. Filipe ⁶, I, Restelli ^{6,5} D. Travetilino ¹, P. Dall Aza ⁶, J. Filipe ⁶, I, Restelli ^{6,5} D. Travetilino ¹, P. Dall Aza ⁶, J. Filipe ⁶, I, Restelli ^{6,5} D. Travetilino ¹, P. Dall Aza ⁶, J. Filipe ⁶, I, Restelli ^{6,5} D. Travetilino ¹, P. Dall Aza ⁶, J. Filipe ⁶, I, Restelli ^{6,5} D. Travetilino ^{6,5} D.

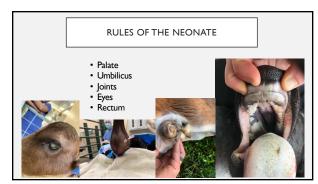
A WORD OF ADVICE ABOUT COLOSTRUM

- Death → Dam or Neonate
- COLLECTHE COLOSTRUM!!
- l. Test It.
- 2. Freeze It.
- 3. Use it.
- EDUCATE your producer or client!
- Your Farm. Your Colostrum. Your Bugs.

4

CATEGORIES OF TRANSFER OF PASSIVE IMMUNITY-2019

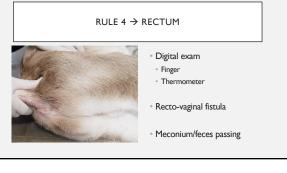
Table 75.1 Herd-level categories and optimal values of serum IgG, STP, and Brix, with recommended proportion of calves for each category.

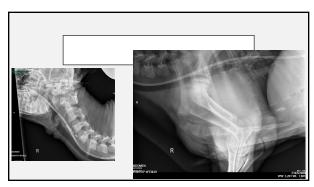

Value/proportion at 24–48 hours	Categories of transfer of passive immunity			
	Excellent	Adequate	Reasonable	Failure
IgL (g/l)	>25	18-24.9	10-17.9	<10
STP (g/dl)	>6.2	5.8-6.1	5.1-5.7	<5.1
Brix (%)	>9.4	8.9-9.3	8.1-8.8	< 8.1
Calves (%)	>40	~30	~30	<10

5

OROGASTRIC TUBING

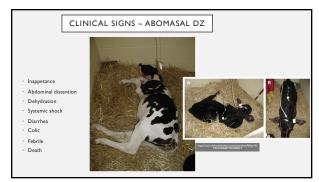
- Esophageal feeder
- "Two-tubes" → trachea & esophag
- I & Done
- Two different esophageal feeders
- Sick calves
- Fluid body temp 38C/100F

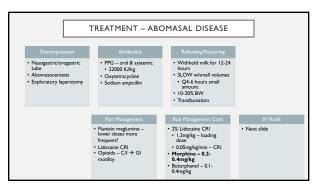



BLOOD WORK

- What are the differences? Does it matter?
 Neutrophils → predominant WBC weeks to months
 Not a large reserve
 12:1N ratio or a IL:1N ratio
 Neutrophila/penia, increased immature forms
 Creatinine elevation in the acute neonatal period
 Glucose Or
 Acidosis/Alkalosis
 Severe electrolyte abnormalities

13

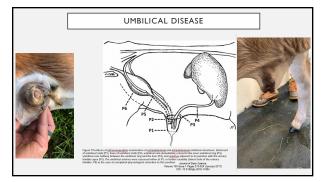

14


ABOMASAL DISEASE

- Abomasal ulceration
- Abomasitis
- Gastroenteritis
- Multifactorial
- Large milk volumes, cold milk, esophageal tube feeding
- Pathogens → Clostridium spp, E. coli, Lactobacillus spp, Campylobacter spp
- Anti-inflammatories
- $^{\circ}\,$ Halofuginone lactate approved outside of US

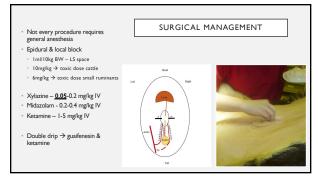
16

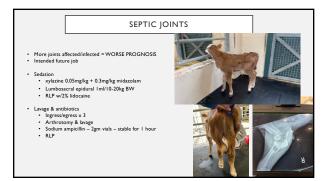
17



FLUID THERAPY


- $^{\circ}$ Fluids \Rightarrow Maintenance + dehydration + ongoing losses
- $^{\circ}$ 8.4% Sodium bicarbonate \rightarrow acidotic at presentation
- $^{\circ}$ BW(kg) × Base deficit (mEq/L) × 0.3-1 (L/kg)
- 45kg x (24-6.5 mEq/L) x 0.5L/kg = 400mmol = 400mEq
 Dextrose → crisis Iml/10# BW
- · CRI vs bolus


19



20

BVDV - APPROPRIATE TESTING Prior to any colostrum consumption OR > 2 weeks of age Ear notch Individual - ACE Individual - Snap Test Pooled PCR Congenital abnormalities → 150-180 d in-utero Cataracts, cerebellar hypoplasia, hydranencephaly

TREATMENT - NEONATES - SEPSIS I. Control infection 2. Modulate inflammatory response 3. Support the animal during disease · Drug distribution, metabolism and excretion differences in neonatal Better GIT absorption of drugs Less binding to proteins Increased apparent volume of distribution → ECF Increased permeability of BBB Slower elimination (longer ½ life) Larger doses administered with longer dosage interval → achieve peak & trough concentrations

28

DRUGS

- WHO KNOWS!!!!
- Personal preference, experience ??
- IV preferred
- 3rd & 4th generation cephalosporins Ceftiofur could be used at labeled dosages & route Sodium ampicillin 10-20mg/kgTID IV
- Florfenicol 20-40mg/kg
- Fluoroquinolones other countries
- Combination drugs may be more important

The characterisation of antimicrobial resistant Escherichia coli from dairy calves

- Tetracycline resistance genes → frequently detected in both gut microbiome of dairy calves & their environment
 Tetracycline resistance genes → most prevalent

29

OTHER THERAPIES

- $^{\circ}$ Supportive care ightarrow warm, good bedding
- $^{\circ}$ Control inflammatory response \rightarrow NSAIDS or steroids
- IV fluids
- Plasma • PPN/TPN
- Oxygen supplementation hypoxia without hypercapnia
- Pantoprazole

32

REFERENCES

Simpson, K. M., Callan, R. J., & Van Metre, D. C. (2018). Clostridial Abomasitis and Enteritis in Ruminants. Veterinary Clinics: Food Animal Practice, 34(1), 155-184. doi:10.1016/j.cvfa.2017.10.010

Guarnieri, E., Fecteau, G., Berman, J., Desrochers, A., Babkine, M., Nichols, S., & Francoz, D. (2020). Abomasitis in calves: A retrospective cohort study of 23 cases (2006-2016). J Vet Intern Med, 34(2), 1018-1027. doi:10.1111/jvim.15726

Credille, B. C., & Epstein, K. L. (2016). Food and Fiber Animal Transfusion Medicine. In Manual of Veterinary Transfusion Medicine and Blood Banking (pp. 321-333).