The Equine Digit: Structure, Function, and The Physical Exam

Andrew Parks University of Georgia College of Veterinary Medicine

The Equine Digit as a Mechanical System

http://ian.umces.edu/imagelibrary/displ ayimage-topn-0-5987.html

Epidermis

Dermis

Subcutaneous Tissue

Cornified Layer

Germinal Layer

But if I was a betting person ...

SPORTS MEDICINE ARTH

REHABILITATION THERAPY TECHNOLOGY

Open Access

P

SMARTT

Wang and Li Sports Medicine, Arthroscopy, Rehabilitation, Therapy & Technology 2010, 2:16 http://www.smarttjournal.com/content/2/1/16

REVIEW

Mechanics rules cell biology

James HC Wang*1 and Bin Li^{2,3}

On the biomechanics and mechanobiology of growing skin

Alexander M. Zöllner^a, Adrian Buganza Tepole^a, Ellen Kuhl^{a,b,c,d,e}

⁸ Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA ¹⁰ Department of Mechanical and Process Engineering, Center of Mechanics, EIPI Zurich, 50x12reland ¹⁰ Department of Bioengineering, Stanford University, Stanford, CA 94305, USA ¹⁰ Department of Confederacic Surgery, Stanford University, Stanford, CA 94305, USA

Biomechanics of the Distal Limb: Key Concepts

Distribution of Pressure Ground Reaction Force Center of Pressure Moment or Torque Our starting point: the distal phalanx (P3) is suspended in the foot by the lamellae

Shod / Flat surface

Moments about the DIPJ at Rest in Disease States

Flexural Deformity (Caused by increased DDF tension)

Moments about the DIPJ at Rest in Disease States

(Caused by decreased DDF tension)

Thought Experiment: ML

Thought Experiment: DP

Effect of Shape on Function

Chronic M/L Evaluation: Radiographic Evidence (or lack of)

Effect of Foot Pastern Axis

Physical Exam: Types of Information

Leads to a diagnosis ---- Specific treatment

Indicators of abnormal stresses Symptomatic treatment

Predisposition to disease

Preventive care

What are you looking for? Most Diseases Associated with Inflammation

Pain Swelling Heat Discoloration Change in function

Acute vs. Chronic

What Makes the Foot Different?

Hoof capsule rigidity: limits swelling

- Difficult to detect
- Magnifies pain
- Hoof viscoelasticity: change in shape

Hoof growth: change rate, surface and shape

Clinical Evaluation of the Foot: History

Presenting complaint

- Lameness / appearance Onset: rapidity and severity Duration: time and variation Treatment and effect Effect of rest or exercise Shoeing: frequency, changes, last

<text><text>

Examination of the Foot: A Breakdown

- I. Basic examination of the foot
- II. Examination in relation to the rest of the limb
- III. More detailed examination of hoof morphology
- IV. Evaluation of the limb in motion
- V. Evaluation of shoeing

I. Basic Examination of the Foot

S.E. O'G

- 1. Assess appearance
- 2. Palpation
- 3. Manipulation
- 4. Compression and Percussion
- 5. Paring

1. Appearance

Hoof trauma Single event Repetitive stress Texture and coloration of surface Distortion of hoof capsule Swellings proximal to coronary band

2. Palpation

Temperature and digital pulse

3. Manipulation: Flexion and rotation

4. Compression and Percussion

Pain Express fluid Movement of hoof Expose occult cracks

Individual variation Be systematic

5. Paring/Exploring

Depends on History Remove shoes

II. Examination of the Foot in Relation to the Rest of the Limb

On the ground

Dorsal, lateral, and palmar perspective
Off the ground

- Dorsal, palmar and solar perspective

T-Square

III. Examination of Hoof Morphology

Size Shape Growth pattern Local distortion From 4 perspectives

Dorsal Perspective

IV. Examination of The Foot in Motion

Pattern of Landing Normal - lateral heel/quarter first or flat at walk Changes with pain due to: change in stride length

avoidance increase duration of impact

Observation of limb in flight phase

Stress Tests

Affect structures associated with Motion

Flexion test

- Sound horses often flex positive
- Individual clinician consistency
- Between clinician variability
- Repetition increases response

Extension test

V. Examination of Shoes Shoe Fit Shoeing interval Shoe wear

If I have time!

66

Radiology: Relationship between hoof and DP

- Size and shape of hoof
- Relationship of the hoof to the distal phalanx
- Relationship between the phalanges

Even weight bearing Flat surface

Careful alignment No forced rotation Toe, sole (frog) markers

The relationship between capsule and distal phalanx: A class exercise

"Normal" Dorsopalmar

Vertical MC III Even joint spaces DP horizontal Symmetry M vs. L hoof

Normal Variant

Vertical MC III Joint spaces Even Not horizontal DP not horizontal

Positioning Artifact

MC III angled Uneven joint spaces Compression same side

Unilateral Joint Compression

MC III vertical Single joint uneven +/- second joint uneven opposite side

= Cartilage loss

Bilateral Joint Compression

MC III vertical DIP and PIP compressed same side Asymmetry of M & L walls Asymm laminitis/ WLD?

Conclusion

- How the foot is "constructed" including conformation and balance influence digital biomechanics and response to stress
- Digital biomechanics influences the distribution of stress in structures of the limb
- Distribution of stress influences the shape and alignment of the foot which can be detected on a physical exam
- Identifying abnormal patterns or stress distribution and understanding digital biomechanics can inform decisions regarding therapeutic farriery