

AUBURN

Increasing the grazing season length Stockpiling - traditional view

- Candidate species in the Southeast: tall fescue, bermudagrass, bahiagrass, limpograss (Allen et al., 2000; Wallau et al., 2015; Rushing et al., 2019; Fancher, 2023)
- Deferred use of forage during a period of low grazed forage availability (Lemus et al., 2008; Troxel et al., 2014)
- 2014)
 Duration: 30 to 80 days (Bivens et al., 2016; Beck et al., 2020)
 Dependent on stockpiling initiation date, fertilizer inputs, weather conditions, grazing method and stocking strategy

7

extension

Increasing the grazing season length

Overseeding – sustainability view

- Year-round management systems and their effects on soil C and N stocks – Silva et al., 2021
- Quantifying nutrient return from cattle and biological N fixation value of diverse forage mixtures – Rouquette et al., 2010
- Long-term effects on cow-calf performance and longevity in the herd (Rouquette and Smith, 2022)

extension

10

 Increasing the grazing season length

 Optimizing stocking strategies – sustainability view

 Soil C and N stocks

 Forage use efficiency – less waste/degradation of the system

 Weed management - healthy forage stands can outcompete weeds

 Forage use efficiency – less waste/degradation of the system

 Prinz use stands can outcompete weeds

 Franzluebbers and Stuedemann, 2009, Other clattons

Reducing hay and supplemental feeding period duration – sustainability view

- A combination of thoughts in the scientific literature – some replicated research trials, some more anecdotal
 Nutrient cycling through the
 - Distribution of nutrients
 - across pastures
 - Value of remaining plant residue on soil?
 - Fertilizer-feed cost dynamics
 - Bachler, 2019; Berry et al., 2021

16

Ø

UBURN

Item	100 lb N	Crimson	Arrowleaf	Dried Distillers	Whole
itein	Per Acre	Clover	Clover	Grains	Cottonseed
Average Daily Gain (lb/d)	3.3 a	2.8 b	2.8 a	3.3 a	3.2 a
Total Gain (Ib/acre)	389 a	289 b	277 b	398 a	388 a
Stocking Density (Steers/acre)	1.5 a	1.2 b	1.2 b	1.4 a	1.4 a
Grazing Season Length	125 a	102 b	98 b	121 a	123 a
Cost of Gain (\$/lb)	0.49	0.50	0.41	0.28	0.30

Research and Extension – Next Steps

22

Hay and Supplemental Feeding

- Continue to promote hay use efficiency, but quantify nutrient return aspects of waste.
- aspects of waste. Develop scenarios which compare N fertilization costs vs. legumes and/or supplements as partial or full replacements in the system. Better quantify the shifting nutritive value of our locally-available byproducts.
- We should be prepared for if and when these resources become unavailable. What are the alternatives?

extension

25

Ø UBURN

