

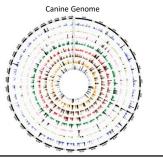
How Can We Breed Healthier Dogs?

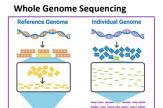
- BOAS is complex
- Let's approach this problem with a simpler example

8

Better Health

- 4 fundamental questions:
- 1. How impactful is this trait to the individual?
- 2. Is this trait heritable?
- 3. If the trait is heritable, how do we effectively screen for it?
- 4. How impactful is this trait to the breed?


 Impact on tl 	he Individ	ual
----------------------------------	------------	-----


2. Determining How Heritable A Trait Is

- Marker-assisted tests
- Genome-wide association studies (GWASs)
 Single-nucleotide variants (SNV) → marker

11

2. Determining How Heritable A Trait Is

	2. Is DM Heritable?	
	•Yes	
13		
]
	Better Health	
	4 fundamental questions:	
	1. How impactful is this trait to the individual?	
	2. Is this trait heritable?3. If the trait is heritable, how do we effectively screen for it?	
	4. How impactful is this trait to the breed?	
L4		
		1
	3. How Do We Screen For Heritable Traits?	
	Genetic testing	
	Health screening → complex traits	

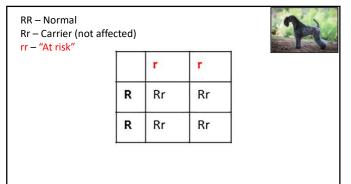
Online Mendelian Inheritance in Animals Database (OMIA)

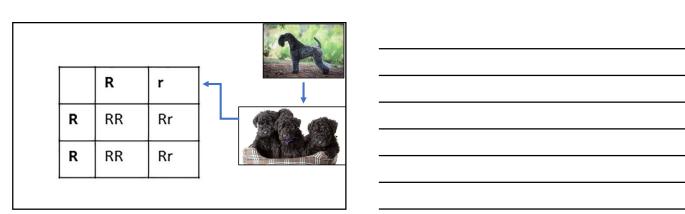
16

Interpreting Genetic Tests

- Individual Will this dog get this disease?
- Simple fully penetrant diseases
- Combining individuals: Possible consequences to the progeny of combining 2 individuals
- Autosomal recessive
 Autosomal dominant
 X-linked dominant
 X-linked recessive

17


3. How Do We Screen For DM?



Genetic testing

OMIA:000263-9615 : Degenerative myelopathy in Canis lupus familiaris (dog) Categories: Nervous system phene $\textbf{Possibly relevant human trait(s) and/or gene(s)s (MIM numbers):} \ \underline{105400 \ (trait)} \ , \ \underline{147450 \ (gene)} \ , \ \underline{618598 \ (trait)}$ Links to MONDO diseases: No links. Mendellan trait/disor

- DNA tests are used to maximize genetic diversity, not to maximize the exclusion of animals
- Breeds where the genetic diversity is low, excluding animals will be far more dangerous in the long run than breeding them wisely

_	_
7	7
_	_

Better Health

- 4 fundamental questions:
- 1. How impactful is this trait to the individual?
- 2. Is this trait heritable?
- 3. If the trait is heritable, how do we effectively screen for it?
- 4. How impactful is this trait to the breed?

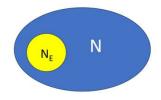
23

- 4. How Impactful Is This Trait to the Breed?
- Genetic Diversity
- Coefficient of Inbreeding (COI)
- Gene Pool Size
- Effective Population Size (EPS)
- Disease Prevalence and Penetrance

Genetic Diversity

- Coefficient of Inbreeding (COI) • Pedigree vs Genome • <10%

Parent/Offspring: 25%


F=0.125 F=0.25

25

Gene Pool Size

- Effective Population Size (EPS)
- >100

 $N_E = 4N_M N_F$

N_E = Effective Population Size N_M = Number of breeding males N_F = Number of breeding females

26

Genetic Diversity

- Penetrance
 Probability of observing a specific phenotype given a certain genotype
- Genetic diversity is dangerously low in certain breeds and disease prevalence can be extremely high at the same time

Preva	lence of	MO:	Genoty	ne in	the	PWC
I I C Va		ועוט	CELICIA	DC 111	uic	1 44 C

- RR 14.1%
- Rr 32.4%
- •rr 53.5%

https://ofa.org/diseases/disease-statistics/

28

4. Impact to the Breed

Genetic Diversity

Poor

Average Coefficient of Inbreeding: 13.2%

Gene Pool Size

Poor

Effective Population Size: 42.60

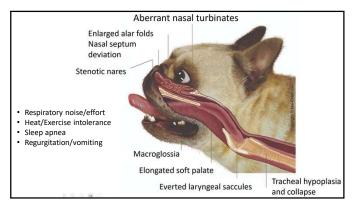
29

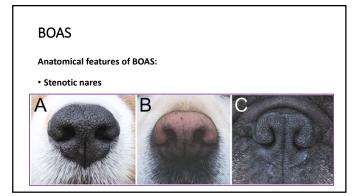
4. Impact to the Breed

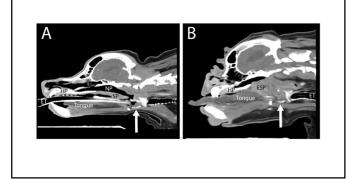
- •RR 53.2%
- •Rr 38.1%
- •rr 8.7%

Better Health

- 4 fundamental questions:
- 1. How impactful is this trait to the individual?
- 2. Is this trait heritable? 🔽
- 3. If the trait is heritable, how do we effectively screen for it? $\ensuremath{ \checkmark}$
- 4. How impactful is this trait to the breed?


31




32

1 & 4. Impact of BOAS to the Individual and the Breed

BOAS Treatment

Surgical correction includes: Staphylectomy Tonsilectomy Rhinoplasty Laser-assisted turbinectomy

- Not curative!

 Reduce clinical severity
 Improve welfare
 Slow the rate of secondary lesion development

38

Brachycephaly

BOAS

Brachycephalic Obstructive Airway Syndrome (BOAS)

• 20-40% are affected by moderate to severe disease

41

 $1\ \&\ 4.$ Impact of BOAS to the Individual and the Breed

Genetic Diversity

Gene Pool Size

Average Coefficient of Inbreeding: 4.8%

Effective Population Size: 132.3

DogBreedHealth.com

Re	tte	r H	دما	lth
DC	יווכ		ıca	ILI

- 4 fundamental questions:
- 1. How impactful is this trait to the individual?
- 2. Is this trait heritable?
- 3. If the trait is heritable, how do we effectively screen for it?
- 4. How impactful is this trait to the breed?

2. BOAS Heritability

- BOAS risk factors
- Heritability difficult to determine due to defining the presence and severity of the disease
- GWAS on 172-210 dogs
 Heritability estimates of 40-60% for BOAS
 Multiple loci (8-11 per breed)

44

3. How Do We Screen For Heritable Traits?

- Genetic testing
- Health screening → complex traits

BOAS Genetic Testing

- In the works!
- Will involve a substantial number of alleles

46

Health Screening

47

Mission Statement:

"To improve the health and wellbeing of companion animals through a reduction in the incidence of genetic disease"

49

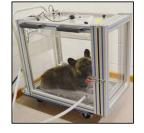
OFA Tests

- Things we know are heritable and what we can screen for
- GP screening tests
- Specialist screening tests
- Breed specific lists

Diseases

Hip Dysplasia
Elbow Dysplasia
Eye Disease
Cardiac Disease
Respiratory Function
Patellar Luxation
Thyroid
Other Phenotypic Evaluations
DNA Based Disease Tests
Disease Statistics

50


French Bulldog Health Screening

Screening	Testing options
Hip Dysplasia	One of the following: OPA Radiographic Hip Evaluation PennHIP Evaluation, Results registered with OFA.
ACVO Eye Exam	Annual Eye Examinations. Results registered with OFA
Patellar Luxation	Veterinary Evaluation of Patellar Luxation. Results registered with OFA.
Cardiac Evaluation	One of the following: Congenital Cardiac Exam - Echocardiagrams recommended but not required Advanced Cardiac Exam - Echocardiagrams recommended but not required Basic Cardiac Exam - Echocardiagrams recommended but not required
Autoimmune Thyroiditis	(Optional but recommended) Autoimmune Thyroditis Evaluation from an approved Lab. Results registered with OFA.
Elbow Dysplasia	(Optional but recommended) OFA Radiographic Elbow Evaluation
Tracheal Hypoplasia	(Optional but recommended) OFA radiographic evaluation for Tracheal Hypoplasia.

Whole-Body Barometric Plethysmography (WBBP)

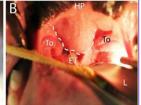
- Non-invasive objective measurement of respiratory function
- Constant ventilating airflow
- Monitors pressure changes from dog breathing
- BOAS Index (0-100%)

53

BOAS Diagnosis

- Current standard: Radiographs, CT, anesthesia, etc
- Gradient scale of the disease

Tracheal Hypoplasia



55

Elongated Soft Palate

56

BOAS Screening

• Exercise and respiratory assessment test

	OFA Screening for BOAS	
	·	
	New pre-breed screening in the works	
	 Exercise test and respiratory assessment 	
	Cambridge and UK Kennel Club	
58		
		_
Received: 7 August 2018 Revised: 28 November 2018 DOI: 10.1111/vsu.13159	Accepted: 16 December 2018	
ORIGINAL ARTICLE - CLINIC	WILEY	
	testing and laryngeal auscultation for	
	ic obstructive airway syndrome in pugs, English bulldogs by using whole-body	
barometric plethysmo		
Julia Riggs MA, VetMB, DipECVS David Sargan MA, PhD Jane F. I	S Nai-Chieh Liu DVM, MPhil, PhD Dawn R. Sutton BVSc Ladlow MA, VetMB, DipECVS	
59		-
Validation of ET	-	
• Riggs et al.		
• Incorporation of an e	xercise test (ET) to challenge upper respiratory	
tract function to identi clinical signs are mild o	fy clinically relevant airway obstruction when	
Hypothesis: 3-minute	trot test will have a positive correlation with	
WBBP data		-

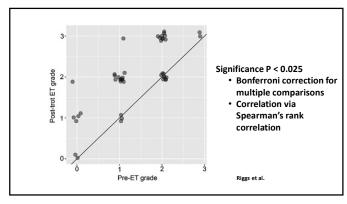
BOAS Exercise Test

- Airway evaluation at rest:
- Stenotic nares
 Laryngeal auscultation
 Respiratory effort
- Baseline clinical grade given
- ET: 3-minute trot test (speed of 4-5 MPH)
- Immediately after ET, airway evaluation repeated

61

Materials and Methods

- Hx and full PE = Comorbidities excluded · Ortho, neuro, cardiopulmonary
- Respiratory distress, cyanosis, collapse, or regurgitation during the test = Grade 3
- 44 dogs, >12 months old


62

Materials and Methods

- WBBP = objective assessment of upper airway obstruction after chamber acclimation
- Respiratory function was assessed over 20 min
- 30+ min between ET and WBBP
- BOAS indices
- Categorized BOAS+ or BOAS Based on predefined, breed-specific thresholds

Grade	Pre-ET /Post-ET	Abnormal Respiratory Noise	Inspiratory Effort	Dyspnea/Cyanosis /Syncope
Grade 0	Pre-ET	-	-	-
	Post-ET	-	-	-
Grade 1	Pre-ET	-/+, nasal stertor when sniffing	-	-
	Post-ET	+, nasal stertor when sniffing	-/+	-
Grade 2	Pre-ET	+/++	+/++	-
	Post-ET	++/+++	++/+++	Dyspnea +
Grade 3	Pre-ET	++/+++	++/+++	Dyspnea ++/+++, +/- cyanosis
	Post-ET	+++	+++	Dyspnea +++, +/- cyanosi or syncope

65

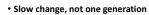
Results

Comparing functional grades to WBBP:

- Sensitivity: 56.7% pre-ET 93.3% post-ET
- Specificity: 100% pre-ET and post-ET

Breeding Recommendations

- Grade 3 dogs withdrawn from breeding programs
- Grade 2 only bred to Grade 1 or 0


• 15 - 20% reduction

67

Future OFA Testing

68

Pearls of Wisdom

- Genetic testing:
 Inclusion of breeding dogs
- Genetic diversity
- Complex genetic traits:
 Screening and removal of dogs with extreme traits
- Reduce BOAS by:
 Making informed breeding decisions
 Health screening

We can prevent disease and breed healthier dogs!

